
1

Evaluating Code Duplication Evaluating Code Duplication 
Detection TechniquesDetection Techniques

Filip Van Rysselberghe and Serge DemeyerFilip Van Rysselberghe and Serge Demeyer
Lab On Re-EngineeringLab On Re-Engineering
University Of AntwerpUniversity Of Antwerp

Towards a Taxonomy of Towards a Taxonomy of 
Clones in Source Code: A Clones in Source Code: A 

Case StudyCase Study
Cory J. Kapser and Michael W. GodfreyCory J. Kapser and Michael W. Godfrey

Software Architecture GroupSoftware Architecture Group
University of WaterlooUniversity of Waterloo

2

Duplicated Code (a.k.a. code clone)

�

Code duplication occurs when 
developers systematically copy 
previously existing code which solved a 
problem similar to the one they are 
currently trying to solve.

�

Typically 5% to 10% of code, up to 
50%.

�

Variety of reasons duplication occurs.

3

Associated Problems

�

Errors can be difficult to fix.

�

Change in requirements may be difficult 
to implement.

�

Code size unnecessarily increased.

�

Can lead to unused, dead code.

�

Can be indicative of design problems.

�

Bugs may be copied as well.

4

Evaluating Duplicated Code 
Detection Techniques

�

Authors set out to evaluate the qualities 
of several clone detection techniques 
and determine where they fit best into 
the software maintenance process.

�

Compares 3 representative techniques 
on 5 small to medium size cases.



5

Duplication Detection 
Techniques

�

Authors suggest there are three groups 
of methods of detecting duplicated 
code:
– String based
– Token based
– Parse-tree based

6

Research Structure

�

Goal

�

Questions

�

Experimental Setup

7

Selected Cases

�

ScoreMaster

�

TextEdit

�

Brahms

�

Jmocha

�

JavaParser of JMetric

8

Results: Portability
�

Simple line matching most portable.

�

Parameterized line matching and suffix 
tree matching are fairly portable. 

�

Metric based matching least portable.



9

Results: What Kind of Matches 
Found?

�

Metrics based approach find function 
block duplication.

�

Simple string matching finds equal lines.

�

Parameterized line matching finds 
duplicated lines.

�

Suffix tree matching finds duplicated 
series of tokens.

10

Results: Accuracy

�

Number of false matches:
– Parameterized suffix tree matching and 

simple line matching find no false matches.
– Parameterized line matching finds few 

false matches.
– Metrics based matching finds many false 

positives when applying metrics to block 
fragments, only a few when applying to 
methods.

11

Results: Accuracy

�

Number of useless matches:
– Both parameterized methods returned low 

amounts of useless matches.
– Metrics found more useless matches, 133 

out of 138 in TextEdit when applying 
metrics to methods.

– Simple line matching finds many, 229 
useless matches in TextEdit.

12

Results: Accuracy
�

Number of recognizable matches
– Metric fingerprints is very high.
– Parameterized matching techniques return 

less recognizable matches.
– Simple string match returns the lowest.



13

Results: Performance

14

Conclusions

�

Based on comparing the 3 representative duplication detection 
techniques, the following conclusions were drawn:

– Simple line matching is suitable for problem detection and 
assessment. 

– Parameterized matching will work well with fine-grained 
refactoring tools.

– Metric Fingerprints will work well with method level 
refactoring techniques.

�

Have shown that each technique has specific advantages and 
disadvantages.

�

Have laid the ground work for a systemic approach to detecting 
and removing clones.

15

Toward a Taxonomy of Clones

�

Aim to profile cloning as it occurs in the 
real world and generate a taxonomy of 
types of code duplications.

�

This will give us insight into how and 
why developers duplicate code, and aid 
the effort in developing clone detection 
techniques and tools.

16

The Study
�

Performed on the Linux kernel file-
system subsystem. 
– Consists of 538 .c and .h files, 279,118 

LOC.
– 42 file system implementations.
– Layered design.

ext2 coda jffs

vfs

kernel



17

Study Methods

�

Used parameterized string matching and 
metrics based detection to gather clones.

�

Manually inspected clones returned from the 
detection tools and created the current 
taxonomy.

�

Generated scripts to classify each clone into 
one of clone types, and again manually 
inspected these results.

18

Taxonomy of Clones

�

Duplicated blocks within the same function.

�

Cloned blocks across functions, files and 
directories.

�

Similar functions, same file.

�

Functions cloned between files in the same 
directory.

�

Functions cloned across directories.

�

Cloned files.

�

Initialization and finalization clones.

19

Results

�

12% of the Linux kernel file-system 
code is involved in code duplication. 

�

Detected 3116 clone pairs, with an 
average length is 13.5 lines.

�

78% of cloning occurs in the same 
directory.

20

Locality of Clone Pairs



21

Frequency of Clone Types

22

Families of File Systems

�

ext2 and ext3 highly related.

�

Intermezzo cloned much from the main 
file-system code and Coda.

�

Jffs has cloned much from inflate_fs, 
most of the clones were put into 1 file.

23

Visualization of Cloning 
Without Showing Same 
Directory Clones

24

Metrics Vs. String Matching



25

Conclusions

�

We have begun to build a taxonomy of code 
clones in software.

�

Cloning activity in the Linux kernel file-system 
subsystem is at a non-trivial rate.

�

Cloning most commonly occurs within a 
subsystem.

�

Parameterized string matching provides an 
interesting and powerful method for function 
duplication detection.

�

3D visualization provided an interesting 
method of viewing clones amongst 
subsystems. 26

Importance of this Work

�

Lots of clone detection methods out 
there, few comparisons.

�

What we catch and what we miss is 
unclear.


