
A Lightweight Process for Architecture Recovery:
From Code to Domain Requirements and Back Again

Davor Svetinovic and Michael Godfrey
School of Computer Science

University of Waterloo
Waterloo, Ontario, N2L 3G1, CANADA

{dsvetinovic, migod}@uwaterloo.ca

ABSTRACT
For many information systems, both the problem domain
and the supporting computing infrastructure change over
time. As new features are added, new environments are sup-
ported, and old defects are fixed, the cumulative effects of
these maintenance activities often pull the design elements
of the system in different directions, causing architectural
drift, conceptual inconsistencies, and a widening of the gap
between requirements and code. Explicitly modeling the
software architecture of a system as a part of the mainte-
nance process can aid in lessening the negative side effects
of maintenance, as the software architecture model serves
as a partial bridge between the requirements of the business
domain and the source code. In this paper, we present a
lightweight process for architecture recovery that aids de-
velopers in creating and maintaining software architecture
models. The process is designed to be practical for the re-
covery of architectures of small to mid-sized software sys-
tems; it is based on and extends the PBS tool architecture
recovery approach and goal-based requirements engineering
theory.

1. INTRODUCTION
Since its early days, software development has been imple-
mentation driven. Programming, still considered by many as
the most important and difficult development activity, has
attracted most of the research attention over time. While
sufficient in some cases, programming has become a rela-
tively routine activity compared to the other development
activities in the development of today’s large, complex, and
constantly changing software systems. The main difficulty
in today’s development is not anymore how to build the sys-
tem, but what to build and how to make it as adaptable to
future change as possible [7].

Because of its early importance, implementation technolo-
gies and paradigms have influenced all development stages,

even the early ones such as requirements analysis and design.
For example, structured and object-oriented programming
paradigms resulted in structured [10, 34, 33] and object-
oriented analysis and design techniques [19, 8, 6]. This tra-
dition continues with emergence of new methodologies such
as aspect-oriented analysis [1], which has its origin in aspect-
oriented programming paradigm.

The success of such approaches was mostly due to the fact
that the traditional way of development focused on one prod-
uct at a time [17]. A clear product-level requirements speci-
fication combined with low-level design, using structured or
object-oriented concepts, was appropriate for a product de-
velopment in relatively stable and well-understood problem
domains.

Domain-level requirements analysis and specification appeared
as a solution to a need for building software systems for
large, difficult to understand, and changing problem do-
mains. Goal-driven requirements engineering emerged as
a leading approach for dealing with domain-level require-
ments for large systems [9, 20, 31]. The main emphasis of
this approach was on making sure that software actually ful-
fills business goals. This goal fulfillment problem was one
of the main weaknesses of the traditional product-level re-
quirements engineering approach.

Now, with the emergence of new economic trends, the In-
ternet as a business medium, software as a commodity, etc.,
even small systems have become much more difficult to build
and maintain. New software paradigms and technologies
such as web services, agility, and product lines, emerged to
solve this new wave of problems. In this new situation, both
business systems and software systems change faster than
ever before. Naturally, both domain and product-level re-
quirements specifications become obsolete very quickly, in
some cases even before the product is built [13, 17]. This
problem, in addition to the old problem of legacy systems,
raises a need for an efficient domain artifacts recovery pro-
cess. We have been working on an lightweight architecture
recovery process that can be used for the recovery and inte-
gration of both, domain and system architectures.

2. THE PROBLEM AND OUR APPROACH
In a situation where both problem domain and supporting
computer system constantly change, and where one system
is used to support multiple different problem domains and



has to be adaptable to the new ones, we need an efficient
way for recovering and preserving artifacts at both, domain
and system levels. Software architecture is considered to be
one of these artifacts.

The goal of our research was to develop a systematic ap-
proach for recovery and presentation of a software archi-
tecture and its rationale (i.e., the underlying reasons for
that particular architecture) for small to mid-sized systems.
Our goal was not to invent yet another architecture recov-
ery process, but to build on existing ones and to conform
to lightweight development philosophy. Two main proper-
ties of target systems are their moderate size and changing
requirements in their problem domain. Also, the particular
emphasis was on the recovery of the architecture rationale,
as design decisions made during development and require-
ments that led to them were not documented and preserved.
Architecture rationale recovery provided us with answers to
why architecture was designed or has drifted in a particular
way.

It was not the goal of our research to develop the definitive
set of activities to be performed and artifacts to be built.
This would be contrary to the inherent difficulties of soft-
ware development, properties of different problem domains,
different circumstances under which recovery is performed,
and purposes for which artifacts are produced. The goal
was to lay out a theoretical background for the recovery
process and clearly define the constraints to be satisfied.
This was done through the use of different meta-models,
such as problem domain and architecture metamodels, and
the analysis of the conformance of different artifacts to the
properties imposed by the lightweight constraints. We ap-
plied the approach for architecture recovery of a mid-sized
software application to evaluate its effectiveness, usability,
and applicability.

3. BACKGROUND AND RELATED WORK
In this section we present background and related research
on software architecture, design, and attribute theory, em-
phasizing how it relates to our research that is presented in
the rest of this paper.

3.1 Software Architecture and Design
One of the main tools that has been used in all areas of soft-
ware engineering to solve different problems is abstraction.
Software architecture is a recent significant result of its use.
It helps engineers to conquer the complexity of the system
by giving them the ability to organize, understand, present,
and manage system in a much more natural and easier way,
than they can just do by using programming language fea-
tures.

Currently, there is no universally accepted definition of what
software architecture is. Nevertheless, common to all pro-
posed definitions is that architecture deals with large scale
constructional ideas and techniques — high level organiza-
tion of system, constraints, motivation and rationale, archi-
tectural styles, interconnections, and collaborations [22, 26,
4].

Software architecture research can be categorized in follow-
ing groups, which together form a body of knowledge and

techniques that software architects use during development:

• Architectural styles and design — study of proven ar-
chitectural designs and practices that help architects
design flexible and extensible software systems.

• Component-based technologies — different technolo-
gies that are used to build systems using proven archi-
tectural practices.

• Architectural recovery, visualization, and analysis —
the focus of this research is on increasing system’s un-
derstandability, reliability, and reusability.

• Run-time system generation and manipulation — the
study of different techniques for run-time system mod-
ularization and modifications.

The focus of our research is on architectural recovery, vi-
sualization, and analysis. The following architectural topics
and techniques are the main tools used by researchers in this
area:

• Architectural views

• Reference architectures

• Architectural refactorings and repair

• Architecture reengineering and visualization

3.1.1 Architectural Views
The biggest problem in trying to determine how best to
represent the architecture and design of a software system
is that there exist many distinct concerns. It is very hard to
present all of them using a single diagram, and even if one
succeeds, the usefulness of that diagram is doubtful. Thus
it is common to separate these different concerns.

Kruchten’s landmark paper on architectural views considers
that there are “4+1” key architectural views [18]:

• Logical View — describes the conceptual decomposi-
tion of system into modules, layers, and other archi-
tectural constructs.

• Process View — describes the run time decomposition
of system into processes and emphasizes concurrency
and synchronization aspects.

• Physical View — describes the mapping of software
components onto hardware components and empha-
sizes distributed aspects of the system.

• Development View — describes the source code and
other development modules organization in a develop-
ment environment.

• Use-Case View — this view unifies all the previously
mentioned views through the use of use-cases.

Each of these views presents two kinds of system properties,
static and dynamic. Notation used to capture these views
should provide support for both properties.



3.1.2 Reference Architecture
A reference architecture is the common architecture model
for a family of products. It represents the structure that is
commonly found, possibly with slight variations, in products
that belong to that family. There are some well-known ref-
erence architectures, for example, for compilers [2, 26] and
operating systems [28]. The main purpose of creating a ref-
erence architecture is to codify knowledge about a particular
product family, and to serve as a starting point in build-
ing a new product. It can also used as a guide to control
the development and prevent anarchy in the system, usually
by reengineering the system to fit its reference architecture
more closely.

3.1.3 Architectural Refactorings and Repair
Refactorings are changes made to the code that improve its
design in some way. Continual refactoring is an important
feature of lightweight methodologies, as it helps to compen-
sate for the lack of upfront design activities. A catalog of
refactorings can be found at [23], and a definitive guide to
performing them is [11].

Of particular interest to us are the refactorings that affect
the architecture of the system. Some of them are presented
in [30], together with a few successful applications. For ex-
ample, architectural refactoring is a process of separating
the user-interface functionality from the application logic in
software systems where these two separate concerns were
merged together.

The current problem with existing refactorings is that they
are not automated and are tedious to perform manually.
More robust support for automatic refactoring has to be de-
veloped and tightly integrated with the other development
tools — one example of such a tool is refactoring support
integrated in IntelliJ IDEA integrated development environ-
ment [14].

3.1.4 Architecture Reengineering and Visualization
One of the main uses of the software architecture is to help
one understand the system. There have been many ef-
forts recently to automate architectural reengineering and to
present this information visually. Most of these tools have
been used exclusively for the visualization of the static struc-
ture of the system and interconnections between its compo-
nents. Examples of these kinds of systems include PBS [21],
Rigi [24], and SHriMP [27].

The usefulness of such systems is in their ability to present
us with important architectural issues, while hiding lower-
level design decisions. For example, the PBS system allows
us to analyze a software system at different levels of ab-
straction, with the lowest level being the source file level. It
also allows us to analyze the dependencies between differ-
ent subsystems, and the dependencies propagation through
function calls, variable references, etc.

3.2 Quality Attribute Theory
Quality attributes are the descriptions and specifications of
the characteristics of a software system and its ability to
fulfill its intended functionality, while satisfying all the im-
posed constraints. The study and use of quality attributes

has made many contributions to software engineering prac-
tice. Goal-oriented requirement engineering processes have
helped capture and model a wider range of requirements
than previously possible, improve requirements traceability,
and facilitate the process in general [20]. Attribute-Based
Architecture Styles (ABAS) have allowed qualitative rea-
soning about the use of a particular architectural style [16].
Architecture Tradeoff Analysis (ATA) method relies upon
the use of quality attributes to analyze and express the ar-
chitectural tradeoffs [15]. Quality attributes are the initial
artifact for several architecture design processes, including
the Architecture-Based Design Method [3]. Besides provid-
ing the driving force, quality attributes also serve as the
connection among all these techniques and methods [12].

All of the previously mentioned techniques are based upon
a solid understanding of the interdependencies among at-
tributes, especially conflicting ones. Several studies have
tackled the problems of complex dependencies between the
attributes and how to manage them [5, 31].

4. DOMAIN ARCHITECTURE RECOVERY
In this section, we present our architecture recovery process.
In the first part of this section, we discuss architecture recov-
ery issues and problems, including techniques used to solve
them. In the second part, we present our architecture re-
covery process in a development process neutral way. In the
third part, we discuss possible ways of adapting and using
our process.

4.1 Architecture Recovery Issues and Goals
Most software systems are built on top of a pre-existing code
base, such as legacy applications and large libraries. Many
of these applications are built without the careful use of
forward design practices, and for most of them, their struc-
ture is not documented or the documents are obsolete. As
qualities of our new application will depend largely on qual-
ities of legacy systems used, we need a way of recovering
and modifying the architecture of these legacy applications.
Also, processes that do not emphasize forward design, and
requirements that constantly change make it even harder to
achieve major system goals.

The main goals of a successful architecture recovery process
are to produce artifacts that describe:

1. the actual architecture of the business domain and
computer system under consideration, and

2. the rationale of that architecture — why architecture
is as it is.

The second goal is considerably harder to achieve since it
includes recovery of forward design decisions made, external
influences that produced them, and alternatives that were
considered and why they were not implemented. The aim
of our approach is to address both of these goals. In addi-
tion, in order to be an efficient and lightweight approach,
our process aims to achieve the following goals and con-
straints: minimal additional developer’s training, low risk
incorporation in the development process, robust roundtrip
tool support, minimal and simple set of artifacts directly



usable later for forward engineering, and use of the forward
engineering principles to recover architecture rationale.

4.2 Architecture Recovery Process
Ideally, the most influential force that drives architectural
design should be the system’s functional requirements and
quality attributes. While often this is the main force that
shapes the architecture of a system, there are many others:
different technical, business, and people-oriented influences
shape architecture in both positive and negative ways. For
example, in a company that has development teams at dif-
ferent locations, actual work division can essentially dictate
the architecture of a system.

The fact that architecture is primarily derived from and in-
fluenced by quality attributes in the context of functional
requirements imposes that an architecture recovery process
should trace from the concrete architecture of the system
back to the actual requirements that originally shaped it.
At the same time, the analyst that is performing architec-
ture recovery must isolate other influences and their effects
on software architecture. Therefore, the main groups of ac-
tivities performed during architecture recovery are:

• discovery of concrete architecture of the system;

• discovery of functional requirements and quality at-
tributes as a major force behind architectural deci-
sions;

• recovery of architecture design decisions that have led
to actual concrete architecture of the system, and iden-
tification of other possible architectural solutions and
their advantages and drawbacks; and

• identification of other factors that have influenced the
architecture.

The first activity is physical architecture recovery, and last
three concern architecture rationale recovery, which together
make a complete set of architectural artifacts.

We define our process in three steps. In the first one, we
introduce major concepts that participate in the process,
including sources of information, different domains of con-
cern, different stakeholders, etc. We relate them using our
architecture meta-model, which is used to keep our process
focused and consistent. In the second part, we introduce
the techniques used to manipulate these concepts, and ar-
chitecture recovery artifacts that are produced as the result
of application of these techniques. In the last part, we intro-
duce the process steps that relate these different techniques,
and provide guidelines on how to perform them.

4.2.1 Architecture Meta-model
In this section, we introduce the essential concepts that oc-
cur in an architecture recovery process. Architecture recov-
ery spans several domains of concern, and an analyst has
to capture all concepts and relations that occur in these do-
mains. In order for a process to be focused, and architecture
recovery efficient and useful, we have to choose a manage-
able subset of these concerns in a way that will maximize
the benefits of capturing and documenting them.

The first major division of these concerns is on:

• business domain architecture, and

• computer system architecture.

Business Domain Architecture

A computer system is a part of a larger business system, and
serves as a resource to accomplish certain business goals.
During an architecture recovery process, we need to study
different aspects of the business domain in order to under-
stand our software system. A large amount of information
about business architecture is gathered, but often much of
that information is lost and not documented during reverse
engineering processes that do not value that type of informa-
tion. Our recovery process tries to capture and preserve this
information as it is very valuable for long term development
goals, and is a major source of architectural influences.

There are four main sets of concepts that describe business
architecture:

1. Business Resources — All entities, both physical and
abstract, that exist inside a business environment. These
include people, information, different computer sys-
tems, business supplies and products, etc. These are
entities that participate in business processes. A sub-
set of these resources is a source of modelling con-
cepts for software systems built using object-oriented
or component-based methodologies. The value of track-
ing and preserving knowledge about these concepts is
in the fact that they serve as a tool to perform anal-
ysis of our software system architecture, and to track
changes to business and software system since when
system was built as a part of evolution study and to
evaluate how well a software system reflects today’s
business needs. A computer system for which we are
performing architecture recovery is a resource within
one or more business ecosystems.

2. Business Goals — The purpose of performing a busi-
ness activity is to achieve certain goals. Goals can be
decomposed into subgoals, and at a certain level of de-
composition, we reach business goals that have to be
satisfied directly by our software system and its ar-
chitecture. The study of business goals allows us to
evaluate how well our software system’s goals conform
to them, and how we should improve our system. An
important part of this work is the study of the evolu-
tion of these goals so the architecture of our system will
be able to support future goals and to remove obsolete
ones.

3. Business Processes — A system for which we are re-
covering architecture may participate within several
business processes in order to help achieve certain busi-
ness goals. The most common forward software anal-
ysis technique is discovery of use-cases to capture re-
quirements. These use-cases describe sub-processes of
larger business processes that are automated by our
system. It is important to understand business pro-
cesses as they relate all the use-cases of our system,



which in turn relate requirements that our system has
to satisfy. This allows us to study the architecture of
a system within a context and to analyze the architec-
ture.

4. Business Rules — Business rules are a major source
of constraints on software system. Many of these con-
straints directly influence software architecture. As
such, it is important to understand them and keep
track of them, for example, to remove architectural
limitations imposed by constraints that do not hold
any more.

Computer System Architecture

Many software development technologies, such as object-
oriented development technology, allow us to simulate con-
cepts that exist in a problem domain. For our purposes, we
define the following architecture concepts that we will keep
track of:

• system,

• subsystems,

• modules,

• connectors,

• processes,

• logical processes, and

• hardware devices.

System concept defines the outermost boundary of the soft-
ware system under consideration. Same as for all other con-
cepts, the amount of information and its scope depends on
the architecture view in which it is used. It serves as a
container for all other concepts, and defines the computer
system as a resource in the business model.

Subsystems are abstract concepts that serve as abstraction
tools for management and abstraction of actual physical
modules, connectors, and processes. They serve as contain-
ers and building blocks of the whole system. Depending on
the architecture view, they capture different concerns of the
system.

Modules are basic architectural building blocks. For exam-
ple, in the logical view they represent concepts that occur in
business domain, and in the implementation view they rep-
resent code units. Modules are abstractions of basic building
blocks of the system, depending on the development tech-
nology used.

Connectors are abstractions of communication mechanisms
and channels that exist in a system. Their size and com-
plexity vary from simple procedure calls to connectors built
from several modules and hardware devices.

Processes are physical, run-time processes that perform ac-
tivities that fulfill goals of logical processes. They are allo-
cated to possibly many different processing nodes, and are
basic building blocks of run-time view.

Logical processes are white-box use-cases. The difference
between them and regular, black-box, use-cases is that they
include descriptions of which activities are performed within
the system.

Hardware devices are concepts that occur in run-view, and
represent actual hardware device that are parts of a com-
puter system.

Figure 1 shows the main concepts, and main relationships
at the architectural level. This is not the only possible de-
composition, but is a useful, minimal one that will help us
focus on the main architecture issues without getting lost
in many details, which are usually not necessary. Simplicity
of the decomposition is also in the spirit of our lightweight
approach, and allows us to abstract from the details of used
low-level development technology.

Now we will present techniques that are used to recover and
present these concepts in order to provide a useful architec-
tural description.

4.2.2 Architecture Recovery Techniques
Before we embark into the discussion of particular architec-
ture recovery techniques and artifacts, we summarize the
main goals of a successful recovery. These goals will be used
to classify and relate specific techniques. These goals are:

• Discovery of the current structure of the system.

• Discovery of the main influences that have led to that
architecture — most important are quality attributes
(in context of functional requirements).

• Discovery of the design decisions that have led to the
current architecture of the system and possible alter-
natives.

Discovery of Present Architecture

Our approach to the recovery is iterative and view-driven.
Architectural views provide separate conceptual approaches
that allow us to focus on recovery of only a portion of archi-
tectural concerns and facts at a time. Iterative means that
we do not focus on completion of architecture recovery from
only one perspective (view) at a time, but iterate among
recovery from different perspectives and use feedback from
one to improve another.

The main work flow is:

1. Initial recovery from problem domain perspective.

2. Recovery from logical, run-time, and test perspective.

3. Recovery from problem domain perspective, and iter-
ation to step 2.

One of the main goals of a good architecture is to preserve
problem domain concepts in software architecture. There-
fore, during recovery we pay special attention to discovery of
actual mappings from problem domain view to other views,



System

Subsystem System

Component

ConnectorHardware DeviceModule

1

*

*

*

* * 1*

Process Logical Process

*

*

-Resource

* *

Business System

1

-Resource*

Business Rule

Business Goal

Business Process

Business Resource

*

*

*

*

*

*

*

*

*

*

Figure 1: Architecture Meta-model

and vice-versa. This is done by tracking which concepts
from one view allow discovery of concepts in another. Only
architecture-relevant concept dependencies are recorded.

Problem Domain View

In order to perform architecture recovery from a problem do-
main perspective, we use forward requirements and business
engineering techniques such as employee interviews. The fo-
cus is on discovery of business resources, goals, processes,
and rules that are closely related to our software system.

Two possible approaches that we are using, depending on
the type of system under consideration, are actor-driven
and process-driven approaches. The actor-driven approach
is useful for systems where actors, as active resources, con-
trol processes that occur inside the system. For example, in
business environments, employees as active resources control
most of the business processes, so for recovery of informa-
tion systems from a problem domain view perspective, we
should use an actor-driven approach. The main steps are:

1. Discover an actor.

2. Discover the goals of that actor.

3. Discover the processes performed to achieve these goals
and the resources used or affected by them.

On the other hand, the process-driven approach guides re-
covery more effectively in business domains where actors are

of secondary importance. For example, for an industrial con-
trol system problem domain, the main focus is on processes
that occur within it and actors are of secondary importance.
The main steps are:

1. Discover a process and the resources used.

2. Discover which goals are achieved by that process.

3. Abstract goals at the level of business goals.

4. Identify which resources are actors.

Contrary to business engineering needs, for our purposes we
do not require a large amount of detail. The main artifacts
produced are:

• Actor-Goal List

• Goal-Process List

• Process-Resource List

• Business Rules List

The main purpose of these artifacts is to preserve knowledge
about identified concepts and relationships among them. We
use a simple list of items although other formats, such as
UML diagrams, are possible. The main reason for using



simple lists is to minimize the effort in producing and up-
dating these artifacts.

Logical, Run-Time, and Test Perspective

The most important perspective for our purposes is the log-
ical view of the system. It serves as a bridge between the
problem domain perspective and the implementation per-
spective. It also has a strong influence on the run-time and
test aspects of the system.

Logical view is composed of a set of concepts, some of which
appear in the pure problem domain, and some in a pure
implementation view. The main value of this view lies in
the fact that it provides a focus and is the main source of
information for actual development of the software system.

This view is further subdivided in two different aspects,
which occur naturally during the recovery process:

1. conceptual architecture, and

2. concrete architecture.

Conceptual architecture is a very high level view of a sys-
tem’s architecture, which occurs often as a transition step
when one analyzes first architecture from a problem domain
perspective and then moves toward analysis at the imple-
mentation level. Concepts that appear in artifacts presented
at the conceptual architecture level are largely a subset of
concepts that occur in the problem domain view.

On the other hand, concrete architecture is a more detailed
view of the system and appears when one is analyzing a
system using the bottom-up approach (i.e., starting from
source code and then abstracting concepts and mapping
them to the concepts that occur in the problem-domain
view). Concepts that appear in artifacts at this abstraction
level are largely a subset of concepts from pure implemen-
tation view.

Our approach is mixed and encourages iteration in the re-
finement of artifacts at both abstraction levels. As con-
ceptual architecture is closer to problem domain concerns,
it is recovered using familiar object-oriented, or component-
based analysis techniques and general problem domain knowl-
edge. Concrete architecture is, on the other hand, recovered
using reverse engineering tools like source code browsers.
Finally, a mapping between these two abstraction levels are
established, with special emphasis on mismatches, which are
potential candidates for architectural refactorings.

Concepts that appear in this view are:

• system,

• subsystems,

• modules,

• connectors, and

• logical processes.

The main techniques used to produce artifacts in this view
are:

• reference architecture, and

• responsibility based dynamic architecture representa-
tion (architectural use-cases).

The Run-Time view in our process is limited to only a basic
description of computer system hardware and process dis-
tribution. Only main processes are discovered, presented
on a diagram, and mapped to their processing nodes. The
only purpose of this diagram is to allow us to map the main
sets of functionality of our system to distributed aspects of
business domain. We do not study it in more detail as the
run-time view depends highly on the choice of hardware and
middleware technologies, and the whole purpose of architec-
tural recovery is to abstract above these low-level concerns.
More detailed study of run-time aspects of a system is ap-
propriate during low-level design recovery of a system.

Test view is an optional view. It is mainly used when a sys-
tem has an existing, extensive set of automated, software-
based testing artifacts such as unit tests. Techniques used
to recover testing aspects of a system are the same as the
ones used for recovery from logical perspective, so we will
not discuss them again. The main use of test view is in
conjunction with logical view to provide a more complete
mapping to problem domain view. The test view is espe-
cially important when studying the evolution of a software
system, as it represents current external needs from business
perspective (i.e., requirements that our system as a resource
is supposed to fulfill).

Now, when we know the state of the current architecture of
the system, we need to find its rationale.

Quality Attributes and Design Decisions Recovery

Similar to recovery of architecture from the logical view per-
spective, the discovery of quality attributes is a two way
process. In one direction, quality attribute recovery is a re-
quirements engineering activity where one analyzes a busi-
ness system to find out which qualities a computer system
as a business resource has to have and fulfill. In the other di-
rection, quality attribute recovery is a technique performed
in conjunction with design decision recovery, and basically
represents an answer to a question of why a particular design
decision has been made.

Quality attribute discovery from requirements perspective is
a well studied activity, described in many requirements en-
gineering texts [25]. Compared to the actual requirements
engineering process, ours is simplified since we concentrate
only on discovery of architecture-relevant quality attributes.
As a main guideline, we have an initial set of commonly oc-
curring quality attributes for a particular problem domain
(there are many classifications of quality attributes) such as
reliability, performance, etc. For each one of these high-level
quality attributes we are discovering, analyzing, and docu-
menting quality facts — simple statements that quantify
these quality attributes in the context of functional require-
ments. For example, “in a case of main system failure, the



monitoring system must restart the main system within 10
seconds”. These quality facts are documented in quality at-
tributes table, and are related directly to high-level quality
attributes, and functional requirements within which they
are analyzed.

Quality attribute recovery from the other perspective is guided
by the analyst’s expertise in forward architecture design
techniques. Many architecture styles today are directly con-
nected to a set of attributes for which they are particularly
well suited [16]. The analyst’s role is to discover architec-
tural styles in the system under consideration and to deduce
which attributes have led to it. Also, for a given set of at-
tributes, analysts must consider which other architectural
styles might be appropriate, and to evaluate their advan-
tages and disadvantages compared to the set of styles al-
ready used for the system under consideration.

Attributes that are discovered as a result of the design de-
cisions recovery process, and that do not map to the actual
needs of the business system, are isolated and emphasized.
This is done since architectural styles that traced back to
these attributes exist because:

• there is some other architectural influence, such as di-
vision of work among developers, or

• these quality attributes have existed before at some
point in time, but do not exist any more, and that
architecture style is probably a candidate for architec-
tural refactorings.

To record this architectural rationale, we use two docu-
ments:

1. a document that relates quality facts through design
decisions to the actual solution, which is ideally ex-
pressed as a set of architectural styles, and

2. a document that contains alternatives to the existing
particular solution.

The first document also includes other discovered, non-attribute,
architecture influences and their results in the architecture.
Even though this information can be presented in several dif-
ferent formats, we use tables, as they are simplest to build
and maintain. Another obvious possibility is to use dia-
grams, but we do not use them due to the very large amount
of information that would add too much noise to the dia-
gram. Also, diagrams are harder to update and maintain.

4.3 Architecture Recovery Process Steps
In order to allow work distribution and separation of con-
cerns, our recovery process is divided into the following
steps:

• Abstract architecture recovery, business domain anal-
ysis, and run-time aspects analysis — Using require-
ments engineering techniques, existing documentation,
and problem domain expertise, analysts try to produce

separately an initial abstract architecture of the sys-
tem and domain-view lists. One of the main techniques
that helps recovery of domain and conceptual architec-
ture is actual use of the system, which aid in creating
a high-level run-time architecture. It is important to
note that much of the effort invested in early itera-
tions is not on getting these artifacts perfectly right
but on providing artifacts that will allow us to perform
following steps. After every iteration, set of artifacts
produced is refined and improved.

• Concrete and test architecture — Analysts try to map
abstract architecture concepts onto source code and to
discover mismatches. Responsibilities and invariants
source code instrumentation is performed at the same
time. These are used to make a summary of dynamic
aspects of concrete architecture, and initial diagram of
static building blocks is produced. Again, this is done
with assumption that these will be refined in follow-
ing iterations. At the same time, optional test view
artifacts are constructed using the same techniques.
Iteration is finished with unification of concrete and
abstract architecture artifacts to reflect current full
understanding of logical architecture of system, and
to serve as input artifacts for the following iteration.

• Quality attributes and design decisions recovery —
While previous steps were mostly routine observation
and analysis, this step depends highly on the analysts’
software design and development expertise. Also, it
depends on availability of codified architectural pat-
terns and attribute quality knowledge for that partic-
ular domain. As a guideline, we will present a minimal
set of these as a part of our case study. These two
activities are very tightly coupled and the iteration
between them is so high that they can be effectively
considered as one, unified activity. Artifacts produced
are quality facts list related to a set of design deci-
sions, and a list of mismatches that indicate possible
external architectural influences.

• Alternative influences and possible design decisions —
Using artifacts produced in the previous step and domain-
view lists, analysts try to discover possible external
architectural influences, and possible design alterna-
tives. The amount of effort invested in this step has
to be critically estimated and justified. For example,
if no changes to the system are supposed to be made,
only very obvious alternatives should be documented.
On the other hand, if a need for extensive refactoring
is already observed, or if large drifts in the business do-
main are expected, analysts should try to identify as
many external factors and alternative design decisions
as possible.

These steps form a recovery iteration, and a whole process
consists of several iterations. Each subsequent iteration is
more specific and detailed than the previous. A common
way is to organize iterations following top-down architec-
tural decomposition of the system. For example, first one
is concerned with architecture at the system level, and next
one at the level of one of subsystems.



Depending on needs, during this step previously produced
artifacts can be presented using different formats for differ-
ent purposes. For example, if artifacts are supposed to be
used for general understanding of the system by new devel-
opers, additional diagrams can be created that present in-
formation from tables in clearer way. Again, effort invested
in creation of additional documentation has to be critically
evaluated against cost criteria.

In summary, we have presented the overall organization of
our process and high-level artifacts. We have omitted pre-
senting the low-level steps and providing the definitive guide-
lines on how each step has to be performed due to the paper
space limitations. Our goal was to keep the process adapt-
able, and to stress the importance of agility and use of the
different techniques to achieve the same goals. For exam-
ple, we did not enforce the use of any particular tool and
its specific recovery steps for the recovery of the concrete
architecture.

5. VALIDATION AND EVALUATION
To evaluate the proposed process, we performed an archi-
tecture recovery case study of the X MultiMedia System
(XMMS) [32]. The main purpose of this case study was to
evaluate our process by applying it to the recovery of a real
world system. The main factors that have led to the choice
of XMMS as a guinea pig are:

• It is a real, industrial strength, multimedia application
in very wide use.

• It is of non-trivial size, 65,000 lines of code, but it is
also small enough to be tractable for our purposes.

• It is in active development, and multiple versions of its
source code can be obtained.

• It is developed using an open source licence, which
means that we can examine it and publish our results
freely.

Due to the space limitations, we are not able to include the
XMMS architecture recover artifacts in this paper. For all
the details about the recovered XMMS architecture, please
refer to [29].

5.1 Case Study Validity
In order to improve the validity of the results derived from
the conducted case study, we have taken several concerns
and issues into consideration when choosing our candidate
system:

• The XMMS system was under development and effec-
tive use for approximately 5 years. This was impor-
tant for validation of our process since we were dealing
with a relatively stable architecture, which has evolved
over time. This implied that we had a possibility to
detect features such as obsolete functionality, changes
in business goals, and so on.

• The core development team consisted of 3 develop-
ers, with contribution from many third parties, and a

large feedback from the user community, which is typ-
ical among widely used open-source systems. The size
of the team was important to insure that the archi-
tectural influences did not come only from one source.
This conforms to the reality of larger scale develop-
ment and affects the quality and stability of the archi-
tecture.

• There was no architectural documentation. In order to
increase the difficulty of the case to which our process
was applied to, we chose a system for which there was
no architectural documentation. This was done with
the assumption that it is harder to perform the archi-
tecture recovery of a system for which no architectural
information is provided.

• There were many contributions from third parties. We
wanted a system that was not developed in isolation,
as many of the architectural issues arise when it comes
to interoperability, distributed development, and simi-
lar. There were many add-ons and pluggins, developed
by third parties, which provided many sources of ar-
chitectural influences and made a more realistic case
for the architecture recovery.

5.2 Process Step Issues
The focus of this section is on describing our experience and
problems during the execution of each process’ activity.

5.2.1 Project Elaboration
As we have discussed at the beginning of our case study
[29], we did not perform a detailed analysis of the feasibil-
ity of our project and the effort that will be required. Like
with all software project management estimations, the pre-
cise estimation of the cost of the reverse engineering project
is difficult to achieve. Since our process was primarily de-
signed to be used for the recovery of small to mid-sized sys-
tems, this estimation is not of the crucial importance — our
estimate was that the upper time limit for the recovery of
the architecture, for a system of the size similar to the size
of XMMS, is one month for a team of three analysts. On
the other hand, if our process is to be adapted and used
for the recovery of architecture of large systems, one should
incorporate cost estimation techniques.

We presented some of the influences on the cost of the recov-
ery at the beginning of our case study [29]. Out of the ones
that we mentioned (documentation, quality of code, size of
the system, developer’s information, and analyst’s problem
domain knowledge), we found that the analyst’s previous
knowledge about problem domain and related applications
plays a dominant role over the others. Even in the case that
all the other influences are positive, it is very hard to recover
the architecture if one cannot put the gathered information
in the context of the problem domain; and it is very time
consuming to learn details about the problem domain.

5.2.2 Analysis of Existing Artifacts
In order to simplify the analysis of the existing documenta-
tion, we performed an extraction and classification of the po-
tentially relevant architectural concepts and features. In or-
der to perform this extraction, we needed background knowl-
edge about the properties of functional and non-functional



requirements as they relate to the software architecture. Our
main focus was on the analysis of different requirements doc-
uments.

Although we had access to and analyzed only a list that
summarized the high-level features of the system and user
manual, for larger systems one usually has access to other
kinds of requirements documents. These include software
requirements specification, requirements rationale, data dic-
tionary, etc.

5.2.3 Domain Architecture
When we attempted to extract the architecture of XMMS
using the original PBS approach, we did not have any inten-
tion to recover the architecture of the problem domain. The
problem that we had was that it was not possible to extract
the conceptual and concrete architecture without having to
search for clues in the problem domain. This resulted in an
unorganized exploration of the problem domain concepts,
and this exploration was not as efficient as it could be as we
were not sure what to look for. Also, we did not make any
attempt to preserve this gained problem domain knowledge,
which could be reused in many different ways in the future
development of the system. Therefore, one of the goals of
our new approach was to deal with domain architecture is-
sues.

The first approach to solve this problem focused on only
documenting the facts about the problem domain. This did
not prove to be an effective approach, as the collected facts
were simply listed, without a particular organization, and as
such they were not very useful for the recovery of conceptual
and concrete architectures. It was difficult to relate one fact
to another, and to further relate them to the architectural
artifacts. Also, we were not able to distinguish different
types of concepts that occur in the problem domain.

In order to solve these problems, we had to introduce a meta-
model for our domain architecture, to find a format which
will present these fact so that they are directly usable for
the recovery of the conceptual and concrete architectures,
and to find a systematic way to analyze the domain in the
early stages of our process. We solved this problem, and us-
ing the proposed steps, successfully recovered and presented
the domain architecture of XMMS. We used these recov-
ered domain concepts also to guide the recovery of the other
architectural aspects.

One of the drawbacks is that we did not make additional
attempts to produce alternative meta-models and formats.
This is not to say that our approach is the only one or the
ideal one, but it was successful in recovering and organizing
these artifacts compared to our initial attempts. There are
other possible ways to approach this problem. For example,
if we are working on the recovery of the architecture of a
system for which there are already existing business domain
analysis documents, possibly the most efficient way is to
follow the already existing meta-model and artifacts.

5.2.4 Conceptual Architecture
The first attempt for the recovery of the conceptual archi-
tecture using the original PBS approach was successful only
as far as the static conceptual architecture was concerned.

Although not clearly required, we attempted the recovery
from the logical perspective even at the early stages of our
recovery. This resulted in a static conceptual architecture
that did not change drastically during the first iteration of
our new approach.

The first disadvantage of the PBS approach is that it did
not require any form of the dynamic conceptual architec-
ture recovery. This led to the discovery and presentation of
structural components without any emphasis on how they
cooperate in order to achieve the overall goals. This lack
of analysis of the dynamic aspects of the architecture re-
sulted in a reduced understanding of the underlying reasons
of the particular static system decomposition. Our approach
tackled this problem of the dynamic architecture using the
architectural use cases [29].

The advantage in using the architectural use cases for the
presentation of dynamic properties is in the fact that the
basic building blocks of these use cases, subsystem respon-
sibilities, are directly derived and produced during the work
on the domain architecture artifacts and during the static
conceptual architecture recovery. Therefore, the early itera-
tions of our process focused on the subsystem responsibility
assignments. On the other hand, later stages focused on
the integration of these responsibilities into fully developed
architectural use cases.

We found that the particular strengths of the architectural
use cases are as an abstract model of the communications
that occur within the system and a technique that drives
the recovery of the architecture and integrates different ar-
chitectural aspects. Nevertheless, we found that it is too
tedious to document all the use cases manually. Also, we
found appealing the use of use case formats other than the
one presented in the case study.

Problems that we had during the initial architecture recov-
ery were the integration of conceptual and concrete archi-
tectures and the refinement of conceptual architecture based
on the results obtained during the recovery of the concrete
architecture. Since the original PBS approach was not iter-
ative, the analyst was aiming to recover as good conceptual
architecture as possible, followed by the recovery of the con-
crete architecture. This often resulted in the architectural
presentations that are not as focused as they could be and
with a large distance between the concrete architecture and
the conceptual architecture. In order to deal with these
problems, our process encourages the iterative refinement of
both kinds of architectures, thus allowing the input of the
facts discovered during the concrete architecture recovery
into the conceptual architecture. This is in conflict with
the PBS approach in which the conceptual architecture is
derived only from sources other than source code.

We found that this iterative approach simplifies the recovery
process, improves the understanding of particular architec-
tural aspects of the system through the indirect analysis of
the dependencies among them, and improves the quality of
the presentation. Also, the attempt for bridging the distance
among different aspects and unification of views simplifies
the understanding of the system, and allow us to present its
architecture from different perspectives, e.g., pure concep-



tual logical perspective, pure concrete development perspec-
tive, unified logical and development perspectives, etc.

5.2.5 Concrete Architecture
One of the main strengths of the PBS approach is the re-
covery of the static concrete architecture. As this step of
the overall approach is almost completely automated by the
PBS tool, our new approach adopted the PBS approach
static concrete architecture recovery techniques without sig-
nificant changes. The main enhancements were introduced
because of the need to incorporate and improve systematic
dynamic concrete architecture recovery.

As with dynamic conceptual architecture recovery, the PBS
approach does not emphasize dynamic concrete architecture
recovery. In order to overcome this problem, we introduced
the activity of the responsibility assignment to the modules
during the recovery process.

The first attempt that we made in order to recover the con-
crete architecture was focused on the immediate recovery of
the facts in a bottom-up fashion. We approached the anal-
ysis of the concrete architecture starting directly from the
analysis of the source code. This quickly proved to be an
inefficient approach because we had difficulty in relating the
discovered concepts due to the large amount of recovered
information. In order to deal with this problem, we decided
to try to approach the problem first in a top-down fashion
and then in a bottom-up fashion. This led to the analysis of
the source code structure down to the level of modules, and
an attempt to relate them to the previously recovered con-
ceptual architecture artifacts. Following that, we used this
high-level concrete architecture in order to organize and fo-
cus on the recovery of the low-level concrete architecture.
This recovery included the analysis of the structure at the
function level and the recovery of concrete responsibilities,
which were related to the actual functions and modules.

This approach resulted in a static concrete architecture en-
hanced over the concrete architecture recovered using the
PBS approach. This enhancement was in the detailed spec-
ification of responsibilities of each module and their relation
to the functions contained within each module. Also, during
the process, we elevated the abstraction level of the module
responsibilities from function level to the module level. This
resulted in an improved analysis of the concrete dynamic ar-
chitecture of the system.

After the extraction of the architectural facts, we used them
to navigate the source code, and together with previously
documented responsibility information, generate the archi-
tectural use cases.

5.2.6 Architecture Rationale
As the primary goal of our process, successful architecture
rationale recovery depends directly on the successful recov-
ery of other artifacts. As such, we attempted to recover and
present all other architectural artifacts in a form that sim-
plifies and facilitates rationale recovery as much as possible.

Architecture rationale recovery is the most subjective recov-
ery activity performed as a part of our process. While other
techniques are mostly of an observational nature, rationale

recovery relies upon a large amount of background architec-
tural knowledge. Also, it is one of the components of the
process that is very hard to automate in any way. This leads
to the situation that successful recovery of rationale depends
largely on the capabilities and performance of the individual
analysts.

This subjectivity of architecture rationale recovery makes
it hard to evaluate. This includes the choice of artifacts,
comparison of the quality of produced artifacts obtained us-
ing different techniques, performance of different recoveries
by different analysts, and so on. Nevertheless, we describe
the issues that arose during our recovery of the architecture
rationale of XMMS system.

Our rationale recovery approach relies on the iterative anal-
ysis of the design decisions that are extracted from the recov-
ered architectural artifacts and the motivations that usually
lead to these design decisions. As a major group of these mo-
tivations, we have the quality attributes and related theory.
We focused on these quality attributes as they are recog-
nized as the major source of architectural decisions.

During the early stages of the rationale recovery, we had a
problem with detecting these architectural attributes. This
was due to the fact that we were trying to discover the qual-
ity attributes directly from the observed design decisions.
As the gap between them is large, i.e., a set of quality at-
tributes can be represented using many architecture design
decisions, the mapping is often not clear. In order to deal
with this problem, we introduced the quality facts, as an in-
termediate instantiation and a representation of the quality
attributes. Although these quality facts simplified the pro-
cess and improved the efficiency of mapping from architec-
tural decisions to quality attributes, they did not completely
remove the ambiguity in some cases. Despite this remaining
ambiguity, we were successful in recovery of architecture ra-
tionale using this technique, and therefore we did not invest
further efforts to find other solutions which would simplify
the recovery even more.

6. CONCLUSIONS AND FUTURE WORK
In order to understand and integrate legacy systems into
new environments, and to successfully develop applications
for rapidly changing business domains using lightweight de-
velopment processes, we developed and presented a lightweight
architecture and evolution recovery process. Our approach
was based on attribute theory, as that theory permitted us
to systematically tackle and recover the rationale behind ar-
chitecture and evolution.

The major obstacle during recovery was a lack of auto-
mated tool support for architectural use-case recovery. Even
though we successfully used this particular technique in or-
der to form a mental model of the dynamic interactions
within the system, it required manual navigation through
module interdependency references, which was very time
consuming. As this technique is very commonly used dur-
ing actual development, and provides an efficient way for the
documentation of high-level interactions within the system,
a tool that supports automated use-case recovery should be
developed.



Our future work will go in two different directions. The
first one is further validation and refinement of our pro-
cess through its application in different development envi-
ronments. The second direction is the development of new
tools and improvement of existing tool support. Special em-
phasis will be given to development of a tool for automatic
architectural use-case recovery and documentation.

7. ACKNOWLEDGMENTS
We thank Daniel Berry and Anne Pidduck for useful dis-
cussions and feedback. Davor Svetinovic was supported in
part by Natural Sciences and Engineering Research Council
of Canada (NSERC) and Fonds de recherche sur la nature
et technologies Québec.

8. REFERENCES
[1] Workshop on Early Aspects: Aspect-Oriented

Requirements Engineering and Architecture Design
(AOSD-2002), Mar. 2002.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers :
Principles, Techniques, and Tools. Addison-Wesley,
Boston, Massachusetts, first edition, 1985.

[3] F. Bachmann, L. Bass, G. Chastek, P. Donohoe, and
F. Peruzzi. The architecture based design method.
CMU/SEI, 2000.

[4] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, Boston,
Massachusetts, first edition, 1998.

[5] B. Boehm and H. In. Identifying quality-requirement
conflicts. IEEE Software, Vol. 13, No. 2, 1996.

[6] G. Booch. Object-Oriented Analysis and Design with
Applications. Addison-Wesley, Boston, Massachusetts,
second edition, 1994.

[7] F. J. Brooks. No silver bullet. Computer, 20(4):10–19,
April 1987.

[8] P. Coad and E. Yourdon. Object Oriented Analysis.
Prentice Hall, Englewood Cliffs, N.J., second edition,
1990.

[9] A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. Science of
Computer Programming, 20(1-2):3–50, 1993.

[10] T. DeMarco. Structured Analysis and System
Specification. Yourdon Press, New York, first edition,
1978.

[11] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston,
Massachusetts, first edition, 1999.

[12] D. Gross and E. Yu. From non-functional
requirements to design through patterns.
www.hkkk.fi/ mrossi/refsq/f113.pdf.

[13] M. Hammer and J. Champy. Reengineering the
Corporation: a Manifesto for Business Revolution.
Nicholas Brealey P., London, first edition, 1995.

[14] IntelliJ IDEA. http://www.intellij.com/.

[15] R. Kazman, M. Klein, and P. Clements. ATAM:
Method for architecture evaluation. CMU/SEI, 2000.

[16] M. H. Klein, R. Kazman, L. Bass, J. Carriere,
M. Barbacci, and H. Lipson. Attribute-based
architecture styles. Proceedings of the First Working
IFIP Conference on Software Architecture (WICSA1),
San Antonio, TX, 225-243, 1999.

[17] P. Knauber, D. Muthig, K. Schmid, and T. Wide.
Applying product line concepts in small and
medium-sized companies. IEEE Software , Vol.17,
Iss.5, pages 88–95, 2000.

[18] P. Kruchten. The 4+1 view model of architecture.
www.rational.com/products/whitepapers/350.jsp.

[19] C. Larman. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design
and the Unified Process. Prentice Hall, Englewood
Cliffs, N.J., second edition, 2001.

[20] J. Mylopoulos, L. Cheung, and E. Yu. From
object-oriented to goal-oriented requirements analysis.
Communications of ACM, Vol. 42, No. 1, 1999.

[21] PBS. swag.uwaterloo.ca/pbs/.

[22] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40–52, 1992.

[23] Refactoring catalog.
www.refactoring.com/catalog/index.html.

[24] Rigi. http://www.rigi.csc.uvic.ca/.

[25] S. Robertson and J. Robertson. Mastering the
Requirements Process. Addison-Wesley, Boston,
Massachusetts, first edition, 2000.

[26] M. Shaw and G. David. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
Englewood Cliffs, N.J., first edition, 1996.

[27] SHriMP. http://www.csr.uvic.ca/shrimpviews/.

[28] A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating System Concepts. John Wiley & Sons,
Hoboken, N.J., sixth edition, 2001.

[29] D. Svetinovic. Agile architecture recovery. Master’s
thesis, School of Computer Science, University of
Waterloo, 2002.

[30] J. B. Tran, M. W. Godfrey, E. H. S. Lee, and R. C.
Holt. Architecture repair of open source software.
IWPC, 2000.

[31] A. van Lamsweerde and E. Letier. Handling obstacles
in goal-oriented requirements engineering. IEEE
Transactions on Software Engineering, Vol. 26, No.
10, 2000.

[32] X MultiMedia system (XMMS). www.xmms.org.

[33] E. Yourdon. Modern Structured Analysis. Prentice
Hall, Englewood Cliffs, N.J., first edition, 1988.



[34] E. Yourdon and L. Constantine. Structured Design :
Fundamentals of a Discipline of Computer Program
and Systems Design. Prentice Hall, Englewood Cliffs,
N.J., first edition, 1979.


