
University of Waterloo

Modelling and Extracting the
Build-Time Architectural View

Michael W. Godfrey

Software Architecture Group (SWAG)

migod@uwaterloo.ca

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

2

Joint work with …

• Grad students
– Qiang Tu

– Xinyi Dong

• Also see:
– “The Build-Time Software Architecture View”,

• Proc. of ICSM 2001

– The BTV Toolkit
• http://www.swag.uwaterloo.ca/~xdong/btv/

• Faculty colleagues
– Ric Holt

– Andrew Malton

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

3

Overview

• The build / comprehend pipelines
– Software architecture views

• The build-time software architecture view
– What and why
– Examples: GCC, Perl, JNI
– The “code robot” architectural style
– Representing build-time views in UML

• Demo of the BTV toolkit

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

4

The build / comprehend pipelines

• “Use the source, Luke”
– Typical program comprehension tool:

• based on static analysis of source code,
[with maybe a little run-time profiling]

– … but developers often use knowledge of the build
process and other underlying technologies to encode
aspects of a system’s design.

e.g., lookup ordering of libraries
e.g., file boundaries and #include implement modules/imports

– This info is lost/ignored by most fact extractors

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

5

The build / comprehend pipelines

• The comprehension process should mimic the build process!
– So create tools that can interact with design artifacts at different stages

of the build pipeline.

– Create comprehension bridges/filters that can span stages.

Source
code

Pre-processed
source code

Object
module Executable

Unified
source model

Source
model 1

Source
model 2

Schemas?
Converters?

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

6

Software architecture: What and why

• What:
– Consists of descriptions of:

• components, connectors, rationale/constraints, …

– Shows high-level structure
• Composition and decomposition, horizontal layers and vertical slices

– Reflects major design decisions
• Rationale for why one approach taken, what impact it has

• Why:
– Promotes shared mental model among developers and other

stakeholders

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

7

The need for multiple views

• Stakeholders have different experiences of what the system
“looks like”
– One size does not fit all.
– “Separation of concerns”

• Kruchten’s “4+1” model:
– Logical, development, process, physical “+” scenarios
– Each view has different elements, different meaning for

connectors, etc.
[Hofmeister et al. proposed similar taxonomy of four views]

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

8

The (4+1)++ model

stakeholders Build-time
View

Build engineers
Developers
Deployers

Customizers

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

9

Why the build-time view?

• Many systems do not have very interesting build-
time properties …
– Straightforward, mostly static Makefile-like

approach is good enough.

• … but some systems do!
– They exhibit interesting structural and behavioural

properties that are apparent only at system build time.

– Want to extract/reconstruct/document interesting build
properties to aid program comprehension.

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

10

Why the build-time view (BTV)?

• Want to document interesting build processes to aid
program comprehension

• Targeted at different stakeholders: anyone affected by the
build process
– System “build engineers”

– Software developers

– End-users who need to build or customize the application

• Separation of concerns
– Configuration/build management

• Of particular interest to open source projects
– “built-to-be-built”

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

11

Some interesting build-time activities

• Automatic “source” code generation
– Build-time vs. development-time (e.g., GCC vs. JDK/JNI)

– Targeted at a large range of CPU/OS platforms
• Implementation (algorithms) are highly platform dependent.
• Conditional compilation is not viable.

• Bootstrapping
– Cross-platform compilation
– Generation of VMs/interpreters for “special languages”

• Build-time component installation
• Runtime library optimization

– e.g., VIM text editor

• …

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

12

Common reasons for interesting
build-time activities
• System building is simply a complex process

– A “software system” is more than a set of source code files

• Software aging
– Older systems gather cruft which is most easily dealt with by

build-time hacks
– Native source language no longer widely supported
– Ports to new environments dealt with at build-time

• Complex environmental dependencies which must be
resolved by querying the target platform
– Especially true for open source software (“built-to-be-built”)
– Common for compiler-like applications

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

13

Build-time view schema

Components Connectors

Executable /
Class File (Java)

Shipped Source
code

Automatically
generated source

code

Environment
Information

compile/link

Compiler

Translator wirtten
in script lanague

Interpreter

Script

build dependency

Translator written
in script language

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

14

Example 1:
GCC bootstrapping

• Same source code is compiled multiple times
– Each time by a different compiler!

• Usually, the one built during the previous iteration.

– Different source modules are included and configured differently
for some iterations

• Static analysis (reading) of the Makefiles doesn’t help
much in understanding what’s going on.
– Makefiles are templated, control flow depends on complex

interactions with environment.

– Need to instrument and trace executions of build process, build
visual models for comprehension

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

15

C ompleted GC C
Source C ode

 Existin g C Co mp iler

"cc" o r "g cc"

Stag e 1 G CC

C Co mp iler "cc1"
C L ib rary " lib g cc.a"

Driver "xg cc"

Stag e 2 G CC

C Co mp iler "cc1"
C+ + Co mp iler "cc1p lu s"

O b ject C Co mp iler "cc1o b j"
C L ib rary "lib g cc.a"

O b ject C L ib rary "lib o b jc.a"
Driver "xg cc"

Stag e 3 (fin al) G CC

C Co mp iler "cc1"
C+ + Co mp iler "cc1p lu s"

O b ject C Co mp iler "cc1o b j"
C L ib rary "lib g cc.a"

O b ject C L ib rary "lib o b jc.a"
Driver "xg cc"

use

use

use

C ompile

C ompile

C ompile

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

16

Example 2:
GCC build-time code generation
• In GCC, the common intermediate representation language

(i.e., post-parsing) is called the Register Transfer Language
(RTL)
– The RTL is hardware dependent!

– Therefore, the code that generates and transforms RTL is also
hardware dependent.

• RTL related code is generated at build-time
– Information about the target environment is input as build

parameters.

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

17

RTL Generator

Optimizer

Parser

Scanner

Semantic
Analyzer

Subsystem Call Dependency
Generated Files at

Build-time

insn-attr.h

insn-attr.c

insn-config.c

insn-flags.c

... ...

insn-peep.c

... ...

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

18

genattr.c genflags.c
gencodes.c genconfig.c

... ...

C
Compiler

genattr genflags
gencodes genconfig

... ...

sparc.md

GCC C Compiler

C Compiler

Source files come
from GCC

distribution
Code View

Execution View

Build View

use Env iroment
Parameters

insn-attr.h insn-flags.h
insn-codes.h insn-config.h

... ...

compile

use

use

depend

compile/link

Env ironment
Parameters

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

19

Example 3:
PERL building procedures
• PERL build process exhibits both bootstrapping and build-

time code generation.
– The PERL build process is so complex that is an open source

project in its own right!

• Templates written in XS language are transformed at
build-time to generate C files that bridge PERL runtime
with Unix runtime libraries.
– These C files are OS dependent.

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

20

miniperlmain.c
opmini.c perl.c

... ...

Gcc use

miniperl

xsubpp.pl
B.xs ByteLoader.xs

DB_File.xs Dumper.xs
... ...

Gcc

Source files
come from Perl

distribution

Perl Interpretor
and Runtime

Build View

Code
View

Execution View

B.c ByteLoader.c DB_File.c
Dumper.c

... ...

compile

use

interpret
transform

use

compile/link

Perl Interpreter
and Runtimes

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

21

Example 4:
Use of Java Native Interface (JNI)

• May want your Java program to make use of an existing
C/C++ program for performance or other reasons.

• Need to go through several steps to customize the
interaction between the two systems.
– Similar to Perl XS mechanism, but done for each Java application

that requires access to “native” code

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

22

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

23

“Code Robot” architecture style

• An architectural style is a recurring abstract pattern of high-level
software system structure [Shaw/Garlan]

“Code Robot”
Problem: – desired behavior of software depends heavily on hardware

platform or operating systems.
Solution: – create customized “source” code at build-time using auto

code generator, code templates, other environment-specific
customizations.

Examples – some open source systems (e.g., GCC, PERL)

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

24

Build View

Code Robot

Code Templates

Compiler

"Code Robot" Source
Code

use

Hardware and OS dependent
source code

Environment
Information

compile

use

transform

depend

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

25

UML Representation

• Static View (UML Component Diagram)
– Components:

• Code written at development phase

• Code generated at build time

• Library and executables

• Environment information

– Relations:
• Compile/Link

• Generate

• Dynamic View (UML Sequence Diagram)
– Model dynamic build procedures

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

26

Static UML View

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

27

Dynamic UML View

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

28

BTV toolkit

• Work of Xinyi Dong; early prototype available from
http://www.swag.uwaterloo.ca/~xdong/btv/

• Idea:
– Record all: [gmake]

• make target/subtarget dependencies
– shows make deps, not compilation deps

• directory locations of targets/files
• build command actions

– Resolve common targets to one node [grok]

– Visualization / navigation [graphviz]

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

29

Expand in place

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

30

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

31 Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

32

BTV toolkit

• Future work:
– Timeline info (sequence charts?)

– Querying

– Improved navigation

– Model files that aren’t explicit targets [hard]

– Model effects of actions / scripts [hard]

Michael W. Godfrey
Uni-Koblenz Feb 2003

Modelling and Extracting the
Build-Time Architectural View

33

Summary

• Build-time view captures interesting structural and
behavioral properties of some classes of software.
– Modelling BTV is essential to understanding such a system’s design

• “Code robot” architectural style
– Common in systems with interesting BTVs

• BTV toolkit can help to explore systems that use make

• Future work:
– More case studies and exploration of problem space

• Discover recurring patterns of build-time activities
– (More) tools to extract and navigate build-time views

