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Joint work with …

• Grad students
– Qiang Tu

– Xinyi Dong

• Also see:
– “The Build-Time Software Architecture View”, 

• Proc. of ICSM 2001

– The BTV Toolkit
• http://www.swag.uwaterloo.ca/~xdong/btv/

• Faculty colleagues
– Ric Holt

– Andrew Malton
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Overview

• The build / comprehend pipelines
– Software architecture views

• The build-time software architecture view
– What and why
– Examples: GCC, Perl, JNI
– The “code robot” architectural style
– Representing build-time views in UML

• Demo of the BTV toolkit
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The build / comprehend pipelines

• “Use the source, Luke”
– Typical program comprehension tool:

• based on static analysis of source code, 
[with maybe a little run-time profiling]

– … but developers often use knowledge of the build 
process and other underlying technologies to encode 
aspects of a system’s design. 

e.g., lookup ordering of libraries
e.g., file boundaries and #include implement modules/imports

– This info is lost/ignored by most fact extractors
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The build / comprehend pipelines

• The comprehension process should mimic the build process!
– So create tools that can interact with design artifacts at different stages 

of the build pipeline.

– Create comprehension bridges/filters that can span stages.

Source
code

Pre-processed
source code

Object
module Executable

Unified
source model

Source
model 1

Source
model 2

Schemas?
Converters?
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Software architecture: What and why

• What:
– Consists of descriptions of:

• components, connectors, rationale/constraints, …

– Shows high-level structure
• Composition and decomposition, horizontal layers and vertical slices

– Reflects major design decisions
• Rationale for why one approach taken, what impact it has

• Why:
– Promotes shared mental model among developers and other 

stakeholders
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The need for multiple views

• Stakeholders have different experiences of what the system 
“looks like”
– One size does not fit all.
– “Separation of concerns”

• Kruchten’s “4+1” model:
– Logical, development, process, physical “+” scenarios
– Each view has different elements, different meaning for 

connectors, etc.
[Hofmeister et al. proposed similar taxonomy of four views]
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The (4+1)++ model

stakeholders Build-time
View

Build engineers
Developers
Deployers

Customizers
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Why the build-time view?

• Many systems do not have very interesting build-
time properties …
– Straightforward, mostly static Makefile-like 

approach is good enough.

• … but some systems do!
– They exhibit interesting structural and behavioural

properties that are apparent only at system build time.

– Want to extract/reconstruct/document interesting build 
properties to aid program comprehension.
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Why the build-time view (BTV)?

• Want to document interesting build processes to aid 
program comprehension

• Targeted at different stakeholders:  anyone affected by the 
build process
– System “build engineers”

– Software developers

– End-users who need to build or customize the application

• Separation of concerns
– Configuration/build management

• Of particular interest to open source projects
– “built-to-be-built”
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Some interesting build-time activities

• Automatic “source” code generation
– Build-time vs. development-time (e.g., GCC vs. JDK/JNI)

– Targeted at a large range of CPU/OS platforms
• Implementation (algorithms) are highly platform dependent.
• Conditional compilation is not viable. 

• Bootstrapping
– Cross-platform compilation
– Generation of VMs/interpreters for “special languages”

• Build-time component installation
• Runtime library optimization

– e.g., VIM text editor

• …
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Common reasons for interesting 
build-time activities
• System building is simply a complex process

– A “software system” is more than a set of source code files

• Software aging
– Older systems gather cruft which is most easily dealt with by 

build-time hacks
– Native source language no longer widely supported
– Ports to new environments dealt with at build-time

• Complex environmental dependencies which must be 
resolved by querying the target platform
– Especially true for open source software (“built-to-be-built”)
– Common for compiler-like applications
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Build-time view schema

Components  Connectors  

Executable /  
Class File (Java)  

Shipped Source  
code  

Automatically  
generated source  

code  

Environment  
Information  

compile/link  

Compiler  

Translator wirtten  
in script lanague  

Interpreter  

Script  

build dependency  

Translator written 
in script language 
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Example 1: 
GCC bootstrapping

• Same source code is compiled multiple times
– Each time by a different compiler!

• Usually, the one built during the previous iteration.

– Different source modules are included and configured differently 
for some iterations

• Static analysis (reading) of the Makefiles doesn’t help 
much in understanding what’s going on.
– Makefiles are templated, control flow depends on complex 

interactions with environment.

– Need to instrument and trace executions of build process, build 
visual models for comprehension
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C ompleted  GC C  
Source C ode 

  Existin g  C Co mp iler 

"cc" o r "g cc" 

Stag e 1 G CC 

C Co mp iler "cc1" 
C L ib rary " lib g cc.a" 

Driver "xg cc" 

Stag e 2 G CC 

C Co mp iler "cc1" 
C+ +  Co mp iler "cc1p lu s" 

O b ject C Co mp iler "cc1o b j" 
C L ib rary "lib g cc.a" 

O b ject C L ib rary "lib o b jc.a" 
Driver "xg cc" 

Stag e 3 (fin al) G CC 

C Co mp iler "cc1" 
C+ +  Co mp iler "cc1p lu s" 

O b ject C Co mp iler "cc1o b j" 
C L ib rary "lib g cc.a" 

O b ject C L ib rary "lib o b jc.a" 
Driver "xg cc" 

use 

use 

use 

C ompile 

C ompile 

C ompile 
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Example 2: 
GCC build-time code generation
• In GCC, the common intermediate representation language 

(i.e., post-parsing) is called the Register Transfer Language 
(RTL) 
– The RTL is hardware dependent!

– Therefore, the code that generates and transforms RTL is also 
hardware dependent.

• RTL related code is generated at build-time
– Information about the target environment is input as build 

parameters.
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RTL Generator  

Optimizer  

Parser  

Scanner  

Semantic  
Analyzer  

Subsystem  Call Dependency  
Generated Files at  

Build-time  

insn-attr.h  

insn-attr.c  

insn-config.c  

insn-flags.c  

... ...  

insn-peep.c  

... ... 
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genattr.c   genflags.c  
gencodes.c   genconfig.c  

... ...  

C  
Compiler  

genattr   genflags  
gencodes   genconfig  

... ...  

sparc.md  

GCC C Compiler  

C Compiler  

Source files come  
from GCC  

distribution  
Code View  

Execution View  

Build View  

use  Env iroment  
Parameters  

insn-attr.h   insn-flags.h  
insn-codes.h   insn-config.h  

... ...  

compile  

use  

use  

depend  

compile/link  

Env ironment 
Parameters 
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Example 3: 
PERL building procedures
• PERL build process exhibits both bootstrapping and build-

time code generation.
– The PERL build process is so complex that is an open source 

project in its own right!

• Templates written in XS language are transformed at 
build-time to generate C files that bridge PERL runtime 
with Unix runtime libraries. 
– These C files are OS dependent.

Michael W. Godfrey  
Uni-Koblenz Feb 2003

Modelling and Extracting the   
Build-Time Architectural View

20

miniperlmain.c  
opmini.c perl.c  

... ...  

Gcc  use  

miniperl  

xsubpp.pl  
B.xs ByteLoader.xs  

DB_File.xs Dumper.xs  
... ...  

Gcc  

Source files  
come from Perl  

distribution  

Perl Interpretor  
and Runtime  

Build View   

Code  
View  

Execution View  

B.c ByteLoader.c DB_File.c  
Dumper.c  

... ...  

compile  

use  

interpret  
transform  

use  

compile/link  

Perl Interpreter 
and Runtimes 
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Example 4:
Use of Java Native Interface (JNI)

• May want your Java program to make use of an existing 
C/C++ program for performance or other reasons.

• Need to go through several steps to customize the 
interaction between the two systems.
– Similar to Perl XS mechanism, but done for each Java application 

that requires access to “native” code
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“Code Robot” architecture style

• An architectural style is a recurring abstract pattern of high-level 
software system structure [Shaw/Garlan]

“Code Robot” 
Problem: – desired behavior of software depends heavily on hardware 

platform or operating systems.
Solution: – create customized “source” code at build-time using auto 

code generator, code templates, other environment-specific 
customizations.

Examples – some open source systems (e.g., GCC, PERL)
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Build View 

Code Robot 
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Compiler 
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UML Representation

• Static View (UML Component Diagram)
– Components:

• Code written at development phase

• Code generated at build time

• Library and executables

• Environment information

– Relations:
• Compile/Link

• Generate

• Dynamic View (UML Sequence Diagram)
– Model dynamic build procedures
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Static UML View
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Dynamic UML View
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BTV toolkit

• Work of Xinyi Dong; early prototype available from
http://www.swag.uwaterloo.ca/~xdong/btv/

• Idea: 
– Record all: [gmake]

• make target/subtarget dependencies 
– shows make deps, not compilation deps

• directory locations of targets/files
• build command actions

– Resolve common targets to one node [grok]

– Visualization / navigation [graphviz]



Michael W. Godfrey  
Uni-Koblenz Feb 2003

Modelling and Extracting the   
Build-Time Architectural View

29

Expand in place
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BTV toolkit

• Future work:
– Timeline info (sequence charts?)

– Querying 

– Improved navigation

– Model files that aren’t explicit targets [hard]

– Model effects of actions / scripts [hard]
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Summary

• Build-time view captures interesting structural and 
behavioral properties of some classes of software.
– Modelling BTV is essential to understanding such a system’s design

• “Code robot” architectural style
– Common in systems with interesting BTVs

• BTV toolkit can help to explore systems that use make

• Future work:
– More case studies and exploration of problem space

• Discover recurring patterns of build-time activities
– (More) tools to extract and navigate build-time views


