

Architecture Recovery of Dynamically Linked Applications: A Case Study

Igor Ivkovic and Michael W. Godfrey
Software Architecture Group

Department of Computer Science, University of Waterloo
{iivkovic, migod}@uwaterloo.ca

Abstract

Most previously published case studies in architecture

recovery have been performed on statically linked
software systems. Due to the increase in use of
middleware technologies, such as CORBA, and OOP
concepts, such as polymorphism, there is an opportunity
and a need to analyze architectures of these dynamically
linked systems. This paper presents the results of software
architecture extraction of the Nautilus file manager,
which employs CORBA in its implementation. A
combination of existing static analysis and use-case
modeling architecture recovery techniques was used with
the expectation of complex but complete architecture
extraction of a system such as Nautilus. We have found
that this combined approach named Dynamo-1 presented
in this paper provided successful focused architecture
recovery and guidance for the future work in complete
architecture recovery of dynamically linked applications.

Keywords: Nautilus, GNOME, program comprehension,
architecture recovery, software architecture, dynamically
linked applications, Dynamo, PBS, Focus.

1. Introduction

Software re-engineering is one of the most important
activities in the software industry used to improve the
understanding and extend the life expectancy of complex
systems that lack proper documentation. The two steps in
software re-engineering, reverse and forward engineering,
attempt to extract and improve the concrete or as-
implemented architecture of the system.

The re-engineering approach selected for particular
software must conform to the type and the model of the
system (e.g., distributed DBMS for Linux) and its domain
of application (e.g., financial industry for contact
management). Without the clear linkage between the
selected approach and the application’s characteristics,
the usefulness of the re-engineering efforts to system’s
stakeholders will be significantly decreased [1, 2].

Previous case studies in software reverse engineering
have been mostly focused on the statically linked
software [3, 11, 12]. The applications that employ
dynamic linking through middleware technologies (e.g.,
CORBA and COM) and OOP concepts (e.g.,
polymorphism and dynamic binding) are not emphasized,
and the complete architecture recovery of these systems is
considered to be an open problem [13].

An increase in use of the dynamic linking in both
proprietary and open-source software indicates a wider
range of opportunities for architectural analysis, and
implies a need for a solution to architecture recovery of
such systems to better support their program
comprehension and software evolution needs.

This paper presents a case study in reverse engineering
an application that employs significant dynamic linking in
its implementation. The selected software system is the
Nautilus file manager, which is an integral part of the
GNOME desktop environment [4]. Nautilus’ use of
CORBA and its relative lack of design documents makes
it an appropriate candidate for architecture recovery of
dynamically linked software systems. The approach used
in the analysis combines the static analysis methodology
[3], based on the filtering and clustering reverse
engineering framework, and the use-case modeling
technique, based on the Focus reverse engineering and
software evolution approach [8].

More accurately, our paper discusses the work used in
or related to our case study in the section two, and talks
about the importance of dynamically linked applications
in the evolution of software in general in the section
three. Nautilus specifics are described in the section four
while the actual architecture extraction experiences and
conclusions are presented in the last two sections.

2. Related work

Holt et al. have significant experience in performing
architecture recovery of statically linked software systems
[3, 7, 11, 12]. Their analysis tool named the Portable

Bookshelf (PBS), based on filtering and clustering reverse
engineering framework, provides automated analysis and
extraction of architectural artifacts that relies on the
existence of code structure and relevant design
documentation. In more detail, their approach starts by
extracting a conceptual or as-designed architecture of the
system from existing documentation and program
structure. This model is then used to extract the concrete
or as-implemented architecture based on the identification
of static relations and a system clustering using the PBS
and the human judgment.

Source Code

cfx

Symbols Used / Defined By
Source Files grok

Hierarchical Subsystem
Composition

Subsystem Uses
Subsystem

lsedit
V

ie
w

sCreates

(Using Conceptual

Architecture)

Figure 1. PBS architecture extraction process

Medvidovic et al. use an approach to architecture
extraction based on use-case modeling called Focus [8].
Focus does not aim for complete analysis of the
application nor does it try to significantly automate the
analysis and architecture extraction. Instead, it is attentive
to the key parts of the system that are most relevant for
the system’s continued evolution. In addition, instead of
relying on existence of valid design documentation and
code structure, it utilizes the use-case modeling to capture
the rationale and the structure of the system being
examined.

Propose idealized architectural model

Identify componentsIdentify key use cases

Generate refined architecture

Analyze component interactionsMap components onto architecture

Figure 2. Focus architecture extraction process

Kazman et al. have also dealt with architecture
recovery and suggested the use of other system structures
such as build files, make files, and executables to enhance
the source-code oriented analysis. Kazman’s group also
discussed the use of code profilers to deal with
dynamically linked applications [13].

3. Dynamically Linked Applications

From the reverse engineering perspective, applications
that employ late binding techniques such as middleware
technologies and OOP concepts belong to dynamically
linked applications. Such programs employ these
techniques for several reasons:

• the ability to share commonly used code across
many applications and platforms,

• the ability to use distributed services,

• the ability to hide the implementation of services
from the application, and

• the flexibility to allow multiple implementations
which are selectable at runtime [14].

Given the importance of cost and time efficiency in
development and maintenance, and a need for distributed
applications due to the popularization of the Internet, the
use of dynamically linked applications is likely to
increase significantly in the next several years.

4. Nautilus

Nautilus is an open-source file manager and graphical
shell for UNIX-like operating systems that employs
CORBA to achieve flexibility in implementation and
selectability of its services. Its source code is available
through the GNOME CVS repository.

Unix-Like Operating System

X Windows Environment

GNOME Environment

Nautilus

Legend: System Call Event

Figure 3. Nautilus in the environment

Nautilus provides an interface similar to Microsoft
Windows Explorer or Linux Midnight Commander, and
extends it through customizable and re-programmable
views. File management is provided through the GNOME
Virtual File System (VFS), while access to the remote
data files is available through the various supported
protocols (e.g., HTTP, FTP) [5].

Given that GNOME is built on top of the X Windows
environment, Nautilus operating system calls have to go
through both the GNOME and the X Windows layer
before reaching the actual operating system services. The
benefit of this approach is the easier implementation
through the unified GNOME API with the slight overhead
of the call proxying through two different architectural
layers.

Nautilus Meta
Window

Nautilus Content
Window

Figure 4. Nautilus file management

Nautilus is also a fairly large-scale project with almost
250 KLOC [6] that consists of the container application
called Nautilus that serves as the main controller, and a
number of view components that are loaded on demand.
Inside of the container application, there is a main content
window that shows various data views (e.g., images are
shown as thumbnails that can be enlarged or shrunk using
the zoom command) and meta-windows on the left that
provide specific functionality (e.g., information about or
functionality related to the data shown in the main content
window).

When navigation to a particular URI is requested by a
view, Nautilus determines what content view and meta-
views should be displayed. Content and meta-views are
determined based on the requested URI, the referring
URI, the content type of the requested URI, and the
application configuration.

4.1. Nautilus and GNOME

Being the integral part of GNOME, Nautilus directly
utilizes other GNOME components such as CORBA-
compliant ORB and GNOME VFS [4].

CORBA is an open standard, distributed-object,
computing infrastructure being standardized by the Object
Management Group (OMG). CORBA provides
automation of many network-programming tasks such as
object registration and activation, and operation
dispatching. Look up service is provided by the Object
Request Broker to get a reference to the function
(service).

GNOME VFS is defined as a user-level file system
abstraction that provides UNIX-like functionality over
multiple protocols and extends the file system concept.
Currently, it supports Native File System, HTTP, FTP
and User-Level NFS.

5. Architecture Recovery of Nautilus

To extract the architecture of a dynamically linked
system such as Nautilus, parts of the static analysis
approach using the PBS tool and the use case modeling
approaching based on the Focus method were combined.
Each of the steps in this approach is selected based on its
compatibility with the properties of the analyzed system.
The resulting approach, named Dynamo-1 for its
specialization in dynamically linked systems, is presented
as Figure 5 and used with Nautilus.

5. Use static analysis on compatible components

1. Recover conceptual architecture 2. Identify key use cases

3. Analyze component interactions

4. Generate intermediate concrete architecture

6. Generate revised architecture

Figure 5. Dynamo-1 architecture recovery process

5.1. Recovering conceptual architecture

Using Holt et al. PBS-based approach, the system’s
conceptual architecture is first extracted from Nautilus’
original documentation, the source code structure and

comments, file and directory naming conventions, and if
available existing reference model for this type of
application [3].

Based on the examination of the Nautilus’
documentation as well as at the corresponding structural
elements of Nautilus, it is recognized that each instance of
the Nautilus Application has a NautilusWindow object
that encapsulates all of the main window controls and
uses NautilusView objects to establish communication
with Nautilus view components. This communication is
primarily one-way, which suggests a layered architectural
style where the NautilusWindow object calls methods on
the NautilusView objects and responds to returning
messages. This structure is depicted as Figure 6.

Nautilus Application

NautilusWindow

NautilusContent
View

NautilusMeta
View

NautilusMeta
View

NautilusContent
ViewFrame

NautilusMeta
ViewFrame

NautilusMeta
ViewFrame

C
O

R
B

A

C
O

R
B

A

C
O

R
B

A

Legend: Subsystem CORBA Call Message

N
au

ti
lu

s:
V

ie
w

ID
L

Nautilus View
Component

Nautilus View
Component

Nautilus View
Component

N
au

ti
lu

s:
V

ie
w

ID
L

N
au

ti
lu

s:
V

ie
w

ID
L

Figure 6. Nautilus conceptual architecture

NautilusView objects proxy all of the communication
from the NautilusWindow to view components which use
CORBA for communication. Nautilus:View IDL method
calls arrive from NautilusWindow and are translated to
the direct CORBA calls for the view components. The
NautilusView objects also convert the returning CORBA
calls into messages that correspond to the Nautilus:View
IDL that are proxied back to the NautilusWindow layer.

NautilusViewFrame objects that are part of the view
components accept the CORBA calls and convert them
into the corresponding Nautilus:View IDL method calls.
These objects also perform the backwards conversion
whereas view component calls to the Nautilus:View IDL
are converted into CORBA calls to the Nautilus
application that are then accepted by the NautilusView
object as returning messages.

5.2. Identifying key use cases

The Focus methodology identifies the key use cases by
analyzing the user-level behavior of the application or the
desired evolution requirements. For this process, Focus
relies on the user-level documentation, which is not easily
available for Nautilus. Instead, by examining the behavior
of Nautilus through its common uses and related work on
the file manager functionality [15], the key use cases were
identified as follows:

• changing the current URI for the current window,

• changing the current URI into a new window,

• updating all visible views,

• showing status messages, and

• stopping the URI loading process.

These are by no means the only system-level use cases
for Nautilus; rather they represent the focus of our
architecture recovery efforts on the key functionality that
is currently most relevant for the software evolution and
program comprehension of the file managers [15].

5.3. Analyzing component interactions

The Focus method uses the identified use cases and
analyses their interactions to discover more details on the
architecture of Nautilus. Two steps in this process are

• the identification of the control flow among
functions, and

• abstraction of this flow to the component level.

Figure 7. Code navigation in Understand for C++

Since Nautilus is a large application with over 250
KLOC, the “Understand for C++” tool [6], which
provides efficient code navigation and analysis of the
C/C++ code bases, is used to help with the analysis.
Using this tool, typical scenarios for the identified key use

cases are traced and the traces of these scenarios are
abstracted to the component level and presented through
the UML sequence diagrams for the verification purposes.
An example sequence diagram is shown as Figure 8.

NautilusWindow NautilusView Nautilus ViewFrame Nautilus View ComponentNautilus Window Manager

CORBA proxy call()

Nautilus_Window_open_location()

open_location()

nautilus_window_begin_location_change()

Nautilus_ViewFrame_open_location()

change_state()

Figure 8. Changing the current URI

Concretely, in addition to the components found
through the conceptual architecture recovery, this step
indicated the existence of the Nautilus Libraries and
Nautilus Window Manager components and their
important interactions with other components. In
particular, Nautilus Window Manager is recognized as a
controller for the NautilusWindow and related
NautilusView objects that deals with all of the changes in
status on these Nautilus objects.

5.4. Generating intermediate architecture

Instead of separately developing an idealized
architecture before the actual system structure is
identified and consequently mapping the identified
components onto this idealized architecture, our
combined approach performs these two steps at once.
The Chiron-2 architectural style for GUI software [9, 10]
is used as a basis for the model that satisfies the recovered
higher-level structures in Nautilus. This intermediate
model is shown as Figure 10. This model does not cover
the lower level structures in Nautilus that were not
emphasized through the key use cases, so they are
analyzed whether they contain any dynamic linking and if
not are analyzed in the next step of our combined
approach.

5.5. Using static analysis where applicable

For the statically linked lower-level components of the
overall software architecture, the PBS tool is now used to
extract the internal structure. The strength of this tool is
the capability of total code coverage, and the detailed
analysis of the underlying relations with an automated

analysis and architecture extraction scripting support.
This advantage will be used to deal with the size of the
application’s code base that would make manual use-case
modeling approach unfeasible.

Figure 9. NautilusWindow architecture

Concretely, the NautilusWindow component was
easily clustered as a part of the Nautilus Application and
it contains various window elements and controls (e.g.,
side bar, location bar, menus). Figure 9 represents the
internal structure of the NautilusWindow. Other elements
such as the NautilusView objects are not as easily
identifiable since their code is split among the libraries
subsystem – an implementation specific structure – and
the cluster identified as their actual code.

5.6. Generating revised architecture

<<Component>>
GNOME GUI

<<Connector>>
GNOME API

<<Component>>
Nautilus Window

Manager

<<Component>>
NautilusContentView

<<Component>>
NautilusWindow

<<Component>>
NautilusMetaView

<<Component>>
NautilusContentViewFrame

<<Component>>
NautilusMetaViewFrame

<<Component>>
Nautilus View Component

<<Connector>>
Nautilus:View IDL

<<Connector>>
Nautilus:View IDL

<<Connector>>
CORBA

<<Connector>>

<<Component>>
File Manager

<<Component>>
Nautilus Application

<<Connector>>

Figure 10. Refined Nautilus architecture

The resulting combination of the higher level as shown
in Figure 10 and the lower level models as contained in
the PBS tool represents the revised architecture of
Nautilus. This architecture can be exported into a unified
format such as UML since most the extracted architecture
artifacts are already in UML and since the PBS supports
exporting into recognized exchange formats such as TA
or GXL [16].

6. Conclusions

This paper presents a case study in architecture
recovery of a dynamically linked software system. Due to
the inability of the existing frameworks to deal with this
class of systems, a hybrid architecture recovery
methodology called Dynamo-1 was proposed, and the
analysis of Nautilus represents its initial case study.

The results of the architectural analysis of Nautilus
showed that our proposed method when applied to a
complex system such as Nautilus could offer successful
focused architecture recovery. However, complete
architecture recovery, which is analog to the results
produced by the PBS tool, could be unfeasible due to the
lack of automation in the use-case identification and call
tracing, which is a crucial part of our method.

Future work on Dynamo-1 includes more case studies
to confirm its validity, and development of a supporting
technology that would allow more automated use-case
extraction and that would make our method capable of
successful complete architecture recovery.

7. References

[1] J. Bergey, D. Smith, N. Weiderman, and S. Woods,
“Options Analysis for Reengineering (OAR): Issues
and Conceptual Approach”, SEI Technical Report
CMU/SEI-99-TN-014, Software Engineering
Institute, Carnegie Mellon University, Sep 1999.

[2] M. Shaw, and D. Garlan, Software Architecture:
Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

[3] I.T. Bowman, R.C. Holt, and N.V. Brewster, "Linux
as a Case Study: Its Extracted Software
Architecture", In Proceedings of the ICSE 99, Los
Angeles, May 99.

[4] "GNOME Resources", Online, www.gnome.org,
2002.

[5] "Nautilus Development", Online, nautilus.eazel.com,
2002.

[6] “Understand for C++” Analysis Tool, Scientific
Toolworks Inc, Online, www.scitools.com/ucpp.html.

[7] R. C. Holt, "PBS: Portable Bookshelf Tools", Online,
http://www.swag.uwaterloo.ca/pbs/, 2002.

[8] L. Ding, and N. Medvidovic, “Focus: A Light-Weight,
Incremental Approach to Software Architecture
Recovery and Evolution”, In Proceedings of the 2001
Working IEEE/IFIP Conference on Software
Architectures (WICSA 2001), Amsterdam, the
Netherlands, August 27-29, 2001.

[9] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, Jr., J. E. Robbins, K. A. Nies, P. Oreizy,
and D. L. Dubrow. “A Component- and Message-
Based Architectural Style for GUI Software”, IEEE
Transactions on Software Engineering, vol. 22, no. 6,
pages 390-406, June 1996.

[10] N. Medvidovic, “Formal Definition of the Chiron-2
Software Architectural Style”, Technical Report UCI-
ICS-95-24, Department of Information and Computer
Science, University of California, Irvine, August
1995.

[11] A. E. Hassan, and R. C. Holt, “A Reference
Architecture for Web Servers”, In Proceedings of the
Working Conference on Reverse Engineering 2000,
Brisbane, Australia, November 2000.

[12] V. Tzerpos, and R. C. Holt, “A Hybrid Process for
Recovering Software Architecture”, In Proceedings
of the CASCON 1996, Toronto, Canada, November
1996.

[13] R. Kazman, L. O’Brien, and C. Verhoef,
“Architecture Reconstruction Guidelines”, SEI
Technical Report CMU/SEI-2001-TR-026, Software
Engineering Institute, Carnegie Mellon University,
August 2001.

[14] “The Dynamic Linking Extension”, Online, A White
Paper from the X/Open Base Working Group, The
Open Group, March 1997.

[15] N. Berzukov, “The Orthodox File Manager (OFM)
Paradigm”, Online, www.softpanorama.org/OFM/
Ofm_00.shtml.

[16] “Graph Exchange Language (GXL)”, Online,
www.gupro.de/GXL/

