
An Integrated Approach for Studying Architectural Evolution

Qiang Tu and Michael W. Godfrey
Software Architecture Group (SWAG)

Department of Computer Science, University of Waterloo
email: {qtu,migod}@swag.uwaterloo.ca

Abstract

Studying how a software system has evolved over time
is difficult, time consuming, and costly; existing techniques
are often limited in their applicability, are hard to extend,
and provide little support for coping with architectural
change. This paper introduces an approach to studying
software evolution that integrates the use of metrics, soft-
ware visualization, and origin analysis, which is a set of
techniques for reasoning about structural and architectural
change. Our approach incorporates data from various sta-
tistical and metrics tools, and provides a query engine as
well as a web-based visualization and navigation interface.
It aims to provide an extensible, integrated environment for
aiding software maintainers in understanding the evolution
of long-lived systems that have undergone significant archi-
tectural change. In this paper, we use the evolution of GCC
as an example to demonstrate the uses of various function-
alities of BEAGLE, a prototype implementation of the pro-
posed environment.

1 Introduction

Software systems must evolve during their lifetime
in response to changing expectations and environments.
The context of a software system is a dynamic multi-
dimensional environment that includes the application do-
main, the developers’ experience, as well as software devel-
opment processes and technologies [19]. Software systems
exist in an environment that is as complex and dynamic as
the natural world.

While change is inevitable in software systems, it is also
risky and expensive, as careless changes can easily jeopar-
dize the whole system. It is a challenging task for devel-
opers and maintainers to keep the software evolving, while
still maintaining the overall stability and coherence of the
system. To achieve this goal, software engineers have to
learn from history. By studying how successfully main-
tained software systems had evolved in the past, researchers

can find answers to questions such as “why and when
changes are made”, “how changes should be managed”, and
“what the consequences and implications of changes are to
continue software development”. Software Evolution, one
of the emerging disciplines of software engineering, stud-
ies the change patterns of software systems, explores the
underlying mechanisms that affect software changes, and
provides guidelines for better software evolution processes.

To discover the evolution patterns of past software sys-
tems, we need practical browsing and analysis tools that can
guide users in navigating through software evolutionary his-
tories. Browsing tools help us to visualize what changes had
happened to the software system in the past. Analysis tools
can aid in discovering “undocumented” changes, assisting
us to find out why such changes happened.

In this paper, we describe an approach towards efficient
navigation and visualization of evolution histories of soft-
ware architectures. Furthermore, we also introduce sev-
eral methods to track and analyze the software structural
changes from past releases. The evolution history of a real-
world software system, the GCC compiler suite, is used to
demonstrate the effectiveness of our approach.

2 Challenges to Software Evolution Research

Many studies on software evolution emphasize the sta-
tistical changes of the software system by analyzing its evo-
lution metrics [15, 16, 8, 6, 20, 1, 9, 17, 4, 22]. Apart from
some visualization tools [11, 13, 7], little work has been
done to help understanding the nature of the evolution of
software architecture.

Performing a long-ranging and detailed evolutionary
case study of a software system presents several difficult
technical problems. Some previous studies have examined
only a small number of the many versions of the candi-
date system, while in other cases the time period studied
has been relatively short, which makes it difficult to gener-
alize the results. The enormous amount of work required
by large-scale empirical study makes it almost impossible
without the application of dedicated tools and integrated en-



vironment, such as the SoftwareChange environment [4].
Strong tool and environment support has been proven a key
factor in conducting a successful empirical study on soft-
ware evolution.

We believe there are three major challenges that must be
overcome in software evolution research. These obstacles
limit our ability to understand the history of software sys-
tems using effective empirical study, thus prevent us from
generalizing our observations into software evolution the-
ory.

The first challenge is how to organize the enormous
amount of historical data in a way that allow researchers
to access them quickly and easily. Software systems with a
long development history generate many types of artifacts.
We need to determine which artifacts should be collected as
the data source for software evolution analysis.

The second challenge is how to incorporate different re-
search techniques of software evolution into one integrated
platform. We have reviewed several models that are based
on software evolution metrics, and visualization techniques
that display software history in graphical diagrams. Evolu-
tion metrics are precise, flexible, and can be used for statis-
tical analysis. Visualization diagrams provide the overview
of the evolution history and have visual appeal to the users.
When used together, they are valuable tools for software
evolution study.

The third challenge is how to analyze the structural
changes of software systems. Traditional name-based com-
parison techniques are not effective when the software sys-
tem adopts a different naming scheme for program mod-
ules or a changed source directory structure. New research
methods must be explored to solve this challenging prob-
lem.

3 Discussion of Methodologies

In this section, we introduce an approach that attempts
to answer the three challenges listed above. Our approach
includes a web-based research platform that integrates sev-
eral essential techniques in studying software evolution, and
a novel approach for analyzing software structural changes.

We first discuss how the data are selected and stored in
the platform. Then we discuss how various analysis meth-
ods can be integrated in the platform, and how to apply them
to solve problems in evolution research.

3.1 History Data Repository

3.1.1 Data Source

As a software system evolves, the various activities related
to its evolution produce many new and changed artifacts.
The archives of each of these artifacts reveal one or more
aspects of the software evolution. These artifacts include:

• Program source code, Makefiles, compiled binary
libraries, and executables. These artifacts are the main
products of software development activities.

• Artifacts related to the requirement specification and
architecture design. They include feasibility studies,
functional and non-functional requirement specifica-
tions, user manuals, architecture design documents,
user interface mockups, and prototype implementa-
tions.

• Artifacts related to testing and maintenance activities.
They include defect reports, change logs, new feature
requests, test suites, and automated quality assurance
(QA) tools.

In this paper, we have chosen to focus on the evolution
archives of Open Source Software (OSS) systems. The rea-
son is that most OSS projects maintain complete archives of
program source code and version control database for his-
tory releases on their FTP sites, and free of change. We
also have more freedom in our research without getting
into complicated copyright or confidential issues as the case
with commercial systems. The ad hoc nature of OSS de-
velopment process often makes it difficult to find archived
documentation (other than the source code itself) that de-
scribe in detail all the major changes made to the software
architecture in the past. Fortunately, OSS projects usu-
ally maintain a complete source code base for all past re-
leases. And furthermore, there exists many software reverse
engineering techniques that can extract and rebuild some
of the software architecture information from the source
code. As the result, we selected source code as the primary
data source for studying the evolution of software architec-
ture, and other program artifacts including version control
database are used as complementary.

3.1.2 Software Architecture Model

In this paper, software architecture refers to the structure
of a software system, emphasizing the organization of its
components that make up the system and the relationships
between these components. We apply reverse engineering
techniques on the program source code to extract the most
basic architecture facts including program components and
their relationships, and then recreate the high-level software
architecture using fact abstractors and relational calculators.

Depending on the abstraction level, we have four archi-
tecture models that describe the structure of the software
systems using components and their relationships. Each
model describes the system structure with a different level
of abstraction. By modeling the software system at several
abstraction levels, researchers can not only study the over-
all organization of the system, but are also able to “drill



down” the high-level component to further examine its in-
ternal structure. The four architecture models are [24]:

1. Entity-Level model — This model describes the data
and control flow dependencies between basic program
entities, such as functions, non-local variables, types,
and macros. It also describes the containment re-
lations between these low-level program entities and
their containing entities, which are program files.

2. File-Level model — This model describes the con-
trol flow and data flow dependencies between program
files or modules. These higher-level entities and rela-
tions are “lifted up” from those in the function-level
model using relational calculus. There are ten depen-
dency types in this model to describe different kinds of
relationship between program files.

3. High-Level model — This model also describes the de-
pendencies between program files or modules. How-
ever, the dependencies are abstractions of those pre-
sented in the file-level model. Related dependencies
are grouped into three basic relation groups: func-
tion calls, data references, and implementation rela-
tions between header files and implementation files.

4. Architecture-Level model — This model describes the
software architecture at the highest abstraction level.
Program entities at this level are mainly subsystems
and files. A subsystem is a group of related files or
lower level subsystems that implements a major unit
of functionality of the system. The process of creating
a subsystem decomposition is mainly performed man-
ually with assistance from the source directory struc-
ture, filename convention, and automatic module clus-
tering tools. The relations between subsystems are de-
scribed by the same three basic relation types as in the
higher-level model.

3.1.3 Evolution Metrics

Code-based evolution metrics provide valuable information
to study the evolution attributes of individual program en-
tities. The metrics we selected include basic metrics such
as lines of code, lines of comments, cyclomatic complex-
ity, code nesting, fan-in, fan-out, global variable access and
update, number of function parameters, number of local
variables, the number of input/output statements, as well as
composite metrics including S-complexity, D-complexity,
Albrecht metric, and Kafura metric. The details of these
evolution metrics and their role in analyzing software archi-
tecture evolution will be discussed in section 3.3.1.

In addition to architecture facts extracted from program
source code and evolution metrics that are also measured

from source code, we need data that provides extra infor-
mation about each past release. This information includes
the release date and the full version number.

3.2 Navigation of Evolution Information

3.2.1 Incorporating Evolution Metrics with Software
Visualization

Previous work in incorporating software metrics with visu-
alization techniques in program comprehension have been
discussed by Demeyer et al. [3] and Systa et al. [21]. De-
meyer et al. proposed a hybrid reverse engineering model
based on the combination of graph visualization and met-
rics. In their model, every node in a two-dimensional graph
is rendered with several metrics at the same time. The val-
ues of selected metrics are represented by the size, position,
and color of the node. Systa et al. have developed a reverse
engineering environment called Shimba for understanding
Java programs. Shimba uses reverse engineering tools Rigi
and SCED to analyze and then visualize the static structure
and dynamic behavior of a software system.

Both approaches have proved effective in program com-
prehension by combining the immediate appeal of software
visualization with the scalability and precision of metrics.
We are proposing to adopt a similar approach in software
evolution research, by creating an integrated platform that
integrates evolution metrics, program visualization, soft-
ware structural analysis, and source navigation capability
into one environment.

The platform should provide at least two windows when
showing the evolution information of software systems. The
first window shows a visualization that models the history
of the whole software system, or selected program entitles
or relations. When the user needs more detail about par-
ticular program entity, (s)he can click on the graphical el-
ement that models the entity and the second windows will
be shown. This window contains the history information of
the evolution metric measurements for the interested pro-
gram entities.

3.2.2 Comparing Differences between Releases

There are two common approaches to visualizing software
evolution. The first approach attempts to show the evolu-
tion information with one graph for all the history releases,
such as Gall’s colored 3D evolution graph [7]. The other
approach shows the architectural differences between two
releases, as seen in GASE [11] and KAC [13] systems.

Our method is to display the two types of evolution vi-
sualization graph at the same time. First, we provide a tree-
like diagram that shows the system structure of one of the
release that is included in the comparison, usually the most



recent one. We call it the structure diagram. The struc-
ture diagram models the system hierarchy as a tree with
branches and leaves. The “branches” of the tree represent
subsystems and program modules. The “leaves” of the tree
represent functions defined in the program modules. The
user can click on a “branch” (a subsystem) to expend it to
show the lower-level “branches” (modules), and further to
“leaves” (functions). We also use colors and saturations
to model the evolution status of each entity in the “tree”.
Red, green, blue, and white are used to represent “new”,
“changed”, “deleted”, and “unchanged” status respectively.
To differentiate program entitles that are all “new” (added to
the system later than the first version in the comparison was
released), different levels of red are used to represent their
relative “ages”. Entity in vivid red came into the system
most recently, while darker red means the entity has been
in the system for many releases. With the help of the tree
diagram and a novel color schema, we can model the evo-
lution of the system over several releases in a single graph,
as shown in figure 1.

Figure 1. Expandable System Structure

Another diagram is shown next to the tree diagram: it
is designed to display and navigate the differences between
two releases. We call it the dependency diagram. The de-
pendency diagram is based on the landscape viewer used
in PBS tools, and extends the schema by adding evolution
related entities and relations.

If a user selects a group of releases and wants to visual-
ize the change history, the tree graph usually shows the pro-
gram structure of the most recent release in the group, with
different colors to represent the different evolution status of
its program entities inside. The software landscape graph
will show the differences between the architecture of the
earliest release and the most recent release, especially the
structural difference of the program entity that is selected

in the tree diagram between the two releases. By showing
the two types of visualization graphs together, user can ex-
amine the evolution from many different perspectives, and
navigate from one diagram directly into another diagram.
Figure 4 shows a prototype implementation of the ideals
discussed above.

3.3 Analysis of Software Structural Changes

The method we have developed to analyze software
structural change is called “Origin Analysis”. We use it to
find the possible origin of function or file that appear to be
new to a later release of the software system, if it existed
previously within the system in another location. Many
re-architecting (high-level changes to the software archi-
tecture) and refactoring [5] (low-level modification to the
program structure) activities involve reorganizing the pro-
gram source code by relocating functions or files to other
locations, with little change actually made to the program
entity. Meanwhile, their names may also be changed to re-
flect a new naming schema. As a result, many new entities
that appear to be added to the newer release of the system
are actually old entitles in the new locations and/or with a
new names.

We define “origin analysis” as the practice to relate pro-
gram entities from the earlier release with the apparent new
entities in the later releases. With “origin analysis’, the tran-
sition process from the previous program source structure to
the new one could be better understood because we are able
to unveils many hidden dependencies between the two ar-
chitectures.

In the next section, we will introduce two techniques that
we have developed to implement origin analysis. The first
technique is called Bertillonage Analysis. It uses code fea-
tures to match similar program entities from different re-
leases. The other technique is called Dependency Analysis.
It exams the changes of relationship between selected pro-
gram entity and those who are depended on it to find the
possible match.

3.3.1 Bertillonage Analysis

Bertillonage analysis was originally used by police depart-
ment in France in the 1800s to attempt to uniquely identify
criminals by taking the measurements on various body parts
such as thumb length, arm length, and head size. This ap-
proach predates the use of fingerprints or DNA analysis as
the primary forensic technique. We borrow this term to de-
scribe our approach to measure the similarity between new
functions identified in a later release with those missing
functions from the previous release, hoping to find a pair
positive matches so that we can declare this “new” function
has an “origin” in the previous release. We used the term



“Bertillonage” as it is an approximate technique. Unlike
more advanced techniques such as fingerprinting and DNA
analysis that require more effort and take longer to conduct,
“Bertillonage” is able to identity a small group of “suspects”
quickly and easily from a population of tens of thousands of
candidates. We could use other advanced techniques that re-
quires more computing power, or sometime even common
sense, to filter out the real “suspect” from a much smaller
population.

This approach was first used in clone detection, where
the goal is to discover similar code segments within the
same software release. We extend its application to software
evolution, where we try to match similar functions from dif-
ferent releases to analyze structural changes. “Bertillonage”
is a group of program metrics that represent the character-
istics of a code segment. Kontogiannis proposes to use five
standard software metrics to classify and represent a code
fragment: S-Complexity, D-Complexity, Cyclomatic com-
plexity, Albrecht, and Kafura [14].

We have pre-computed and stored these five measure-
ments for every function in every release of the system un-
der consideration. Any two functions from consecutive re-
leases with the closest distance between their measurement
vectors in a 5-D space are potential candidates for a match.
The rational is that, if a new function defined in the later
release is not newly written, but rather an old function re-
located from another part of the system in the previous re-
lease, then the “new” function and “old” function should
share similar measuring metrics, thus they should have the
closest Euclidean distance between their Bertillonage mea-
surements. The exact matching algorithm is described as
follows:

1. As the result of an architectural comparison, a function
in the reference release is identified as “new”, which
means a function with the same name in the same file
does not exits in the previous release.

2. Compile a “disappeared” list that contains functions
that existed in the immediate previous release, but do
not exist in the current release.

3. Match the Bertillonage measurement vector of the
“new” function with that of every function in the “dis-
appeared” function list. Sort their Euclidean distance
in ascending order.

4. Select the five best matches.

5. Among the five best matches, compare their function
name with the “new” function being matched. Choose
the one whose function name is the most similar to the
“new” function.

The last step of comparing function name works as
a filter to discard mismatched functions, since it is pos-
sible that two irrelevant functions happen to have very
similar Bertillonage measurements. Here is an exam-
ple from the case study of GCC that illustrate why
it is necessary. In GCC 2.0, there is a new func-
tion build_binary_op_nodefault defined in file
cp-typeck.c in subsystem Semantic Analyzer.
When applying Bertillonage analysis, we get the following
five best matches:

1. combine in fold-const.c:
d=1005745.47

2. recog_4 in insn-recog.c:
d=2496769.23

3. insn-recog.c in recog_5.c:
d=7294066.05

4. fprop in hard-params.c:
d=8444858.78

5. build_binary_op_nodefault in c-typeck.c:
d=8928753.44

The obvious choice should be match number 5, which
has the exact filename as the “new” function. The only dif-
ference between these two functions is the files in which
they are defined. However, they do not have the closest dis-
tance, as match 1 to 4 are much closer to the “new” function
than the correct “origin” function. The explanation could be
that this function has somewhat changed its internal struc-
ture (control flow and data flow) in v2.0, so it measured as
distant in the 5-D vector space. However, since these two
functions are expected to implement the same functionality
in both releases, we can still pick them up with Bertillonage
matching algorithm enhanced with function name filter.

3.3.2 Dependency Analysis

We use the following analogy to explain the basic idea be-
hind Dependency Analysis: imagine a company that manu-
factures office furniture has decided to move from Toronto
to Waterloo. This event will affect both its business suppli-
ers and customers. Its supplier, say a factory that provides
building material to the company, must update its customer
database by deleting the old shipping address in Toronto,
and then adding a shipping entry to reflect the new address
in Waterloo. The customer, for example, Office Depot, also
needs to update their supplier database to delete the old
Toronto address and update it with the new Waterloo ad-
dress. If we do not know the fact that the new office fur-
niture company that just registered with City of Waterloo
is actually the old company with many years of operation



history in Toronto, we can compare the changes of the cus-
tomer database of its suppliers, and the supplier database of
its customers to discover this move.

The same type of analysis can also be used for analyzing
software architectural changes. In this case, we are trying
to identify a particular change pattern on call dependency.
There is a description of how the dependency analysis is
performed to track function movements:

1. Identify the “new” function in the reference release.

2. Analyze the caller functions:

(a) Find all the caller functions of this “new” func-
tion.

(b) For every caller function that also exists in the
previous release, compare the differences of the
function lists that it calls in both releases. Se-
lect those functions that were being called in the
previous release, but no more in the reference re-
lease.

(c) Any functions that are selected more than once
are candidates for the origin of the “new” func-
tion.

3. Analyze the callee functions:

(a) Find all the functions that this “new” functions
calls in the reference release.

(b) For every callee function that also appear in the
previous release, compare the difference of the
list of functions that call it in both releases. Select
those functions that were calling it in the previous
release, but no more in the reference release.

(c) Any functions that are selected more than once
are candidates for the origin of the “new” func-
tion.

4. By combining the results from previous two steps, we
might find the “origin” for the “new” function, if it is
not really newly written, but an “old” function being
moved to the current location.

Figure 2 shows an example that we can verify our depen-
dency analysis. Function A in release v2.0 is “new” to the
system. Now we need to find out if there it has an origin in
the previous release v1.0.

• Caller Analysis: Function A is called by Function B
and C in v2.0. However, only B exits in both v2.0 and
v1.0. So we will see how the callee list of B has been
changed: B used to call G and F in v1.0, but in v2.0, it
calls G and A. The difference is function F in v1.0 and
we put this function in the candidate list.

B( )

C( )

A( )

D( )

E( )

G( )

N( )

Release
v2.0

B( )

G( )

F( )

E( )

N( )

Release
v1.0

Figure 2. Call-Relation Change Analysis

• Callee Analysis: Function A calls function D and E
in v2.0. Be-cause D was not in v1.0, we only need
to study E: E used to be called by F and N in v1.0,
but it is called by A and N in v2.0. The difference
is function F again, which agrees with the result from
caller analysis.

After applying both caller analysis and callee analysis,
we believe that the “new” function A in v2.0 has very close
tie with an “old” function in v1.0, if they are not the same
function at all.

4 BEAGLE: An Integrated Environment

To validate the research techniques we have just dis-
cussed, we have built an research platform called BEA-
GLE 1 that integrates several research methods for study-
ing software evolution, including the use of evolution met-
rics, program visualization, and origin analysis for struc-
tural changes.

BEAGLE has a distributed architecture that reassem-
bles a three-tier web application. At the backend, the
evolution data repository stores history information of the
software system. The data repository, together with the

1BEAGLE is named after the British naval vessel on which Charles
Darwin served as a naturalist for an around-the-world voyage. During that
historical voyage, Darwin collected many specimens and made some valu-
able observations, which eventually provided him the essential materials
to develop the theory of evolution by natural selection. We hope that our
tool will also prove to be a useful vehicle for exploring evolution.



query-processing interface, forms the database tier. In the
logic tier, comparison engine retrieves information from the
database tier, and compare the differences between the se-
lected releases from various perspectives. The origin anal-
ysis component performs the task to reveal the hidden rela-
tions between the program structures of difference releases.
The visualization component generates the graphical repre-
sentation of the software evolution data. The components
in the logic tier receive user queries and send back query
results through the user interface application running on
clients’ machines, which forms the user tier. Users can also
navigate the evolution data using tools from this tier.

4.1 Database Tier

Like many information retrieval systems, BEAGLE is
supported by a data repository that is implemented as a re-
lational database. In the database, software architectural in-
formation of past releases, as well as metrics that describe
the attributes of program entities are stored in the database,
organized according to a star schema, which are described
below. Functional components in the logic tier access the
information stored in the data repository through a query
interface. In BEAGLE, the query interfaces are written in
SQL, the standard relational database query language.

4.1.1 Data Repository Schema

In the repository, relational tables are organized accord-
ing to a star schema. The star schema is a popular
data model in database warehouse systems and multi-
dimensional database systems. In star schema, tables are
arranged in the following ways. A central “fact” table is
connected to a set of “dimension” tables, one per dimen-
sion. The name “star” comes from the usual diagrammatic
depiction of this schema with the fact table in the center and
each dimension table shown surrounding it [23].

The BEAGLE data repository has four fact tables. They
model the system structure and relations between program
entities at various abstract levels. The four levels of ab-
straction are: entity, file, high, and architecture. Each level
of architecture fact is stored in its own table for all the his-
tory releases. Besides the different abstraction level, all four
fact-tables have very similar structure.

1. Entity-Level Facts — This table stores the lowest level
of architecture information that we model in BEA-
GLE: the entity level facts introduced in section3.1.2.
We have used the source code extractor cfx to pull
out such information from the source code in our ex-
amples.

2. File-Level Facts — This table stores the entity level
facts. They are induced from entity-level facts using

relational calculus formulas defined in grok scripts in
PBS [10].

3. High-Level Facts — This table stores the high level
facts. Even thought the main entities modeled in this
table are still files, the relations between files are a
set of higher-level relations (userproc, usevar, and
implementby) that are merges from the intermediate
relations modeled by file-level facts. We call these
facts high-level to differentiate them from the file-level
facts.

4. Architecture-Level Facts — The architecture-level fact
table contains not only relations between program
files, but also higher level architecture facts between
file and subsystem, subsystem and subsystem, and also
containment relations between files, low-level subsys-
tems, and high-level subsystem.

Surrounding the fact tables, there are six dimension ta-
bles. They provide additional information for entities and
dependencies modeled in the fact tables:

1. The version number table stores the breakdown of the
version number of each history release. For example,
GCC 2.7.2.3 is broken into major release as two, mi-
nor release as seven, major bug-fix release as two, and
minor bug-fix release as three. The series column is
used to distinguish between the stable release stream
and the experimental release stream. In GCC project,
GCC is reserved for production releases, and EGCS is
for experimental releases.

2. The release date table stores the release date of each
history releases. It includes three columns: year,
month, and day. The release date is used to calculate
the time interval between consecutive releases, which
we use as a rough indicator of development effort.

3. The entity attribute table maps the name of entities
stored in fact tables to an integer value to save storage
space, and improve the comparison performance. Ap-
plications can easily retrieve the real name of program
entitles back by doing a lookup on this table.

4. The configuration attribute table extends the configu-
ration column in fact tables. Many software systems
support flexible building configurations. For example,
GCC supports C, C++, Objective C, Chill, Fortran, and
Java. It provides users an option to choose which com-
piler to be included in the build. In our case study,
we build each release of GCC with two build options:
CONLY for building a C only compiler, and ALL for
building GCC compiler suite with all supported pro-
gramming languages.



5. The function complexity table contains a select of code
metric measurements targeted at the function level.
Measured metrics include LOC, McCabe’s cyclomatic
complexity, fan-in and fan-out. We also pre-compute
and store four composite metrics: S-Complexity, D-
Complexity, Albrecht, and Kafura [14]. We will use
this metric information to act as a kind of “fingerprint”
for the functions in “origin analysis”.

6. The file complexity table contains a set of metrics at the
file level. Most metrics included in this table are basic
complexity metrics. The last metric, maintenance in-
dex, measures the maintainability of a program source
file as introduced in [18].

4.1.2 Repository Access Interface and Comparison
Query

To access the data stored in BEAGLE repository, we pro-
vide a query interface in the data tier so that all the func-
tional components in the logic tier can query and “slice and
dice” the collected history data for navigation and analysis
purposes. The query is implemented as SQL statements,
because SQL is a powerful query language that is able to
express almost all the query we need.

For example, we want to find all the functions that were
newly defined in version v2 (i.e., were not present in ver-
sion v1). We also want to find out all the files in which new
functions are defined, as well as the LOC and Kafura met-
rics for all the new functions. Here is the the SQL statement
that implements this query:

SELECT Func_Name.entity_string AS Function,
File_Name.entity_string AS File,
Metrics.line_of_code AS LOC,
Metrics.Kafura AS Kafura

FROM Entity_Attribute AS Func_Name,
Entity_Attribute AS File_Name,
Function_metrics AS Metrics

WHERE Func_Name.entity_id = Metrics.function_id
and File_Name.entity_id = Metrics.file_id
and Metrics.release_key = v2
and (Metrics.function_id, Metrics.file_id) IN (

SELECT function_id, file_id
FROM Function_Metrics
WHERE release_key = v2

EXCEPT
SELECT function_id, file_id
FROM Function_Metrics
WHERE release_key = v1 )

This SQL statement uses two data tables from the reposi-
tory: Function Metrics and Entity Attribute.
It selects those rows in the Function Metrics table
with release key equals to v2, plus condition that the func-
tion key and file key exits in version v2, but not in version
v1. Then it refers to the Entity Attribute table to
convert the integer key back to entity name string.

Table 1 shows a section of the output of the above query.
We are comparing GCC 2.7.2.3 and GCC 2.8.0.

Function File LOC KAFURA
sets_function_arg_p combine.c 27 12

merge_assigned_reloads reload1.c 45 40
reload_cse_check_clobber reload1.c 8 4
reload_cse_invalidate_mem reload1.c 23 12

reload_cse_invalidate_regno reload1.c 55 66
reload_cse_invalidate_rtx reload1.c 15 21
reload_cse_mem_conflict_p reload1.c 49 27

reload_cse_noop_set_p reload1.c 63 120

Table 1. Result of the example query

4.2 Application Logic Tier

The core functionalities of BEAGLE are provided by
components in the application logic tier. They are version
comparison engine, origin analysis component and evolu-
tion visualization component.

4.2.1 Version Comparison and Evolution Visualization

In BEAGLE, we adopt a novel approach to visualize the
difference between various releases. Figure 4 shows the
screen shot of BEAGLE visualizing the architecture differ-
ences between GCC version 2.0 and GCC version 2.7.2.

The tree structure in the left panel of the window shows
the system structure of GCC version 2.7.2. Items shown
in folder icons are subsystems. It contains files, which is
shown in Document icon. Under file, there are items that
represent functions defined within the source file. Functions
are shown in block icons. User can click on an icon, and
the system structure tree will automatically expand to show
entities under the selected subsystem or file.

In BEAGLE’s evolution visualization, colors are used
extensively to model the evolution status of individual pro-
gram entities:

• Red represents entities that are “new” to the release.
Since we chose to visualize the architecture differences
between GCC v2.0 and v2.7.2, any entities including
subsystems, files, or functions in v2.7.2, but were not
in v2.0 are treated as “new”, thus are tagged with red
icons.

• Blue indicates program entities that were originally in
v2.0, but are missing from v2.7.2.

• Green indicated that parent-level entities, such as sub-
systems and files, contain either “new” entities or have
entities deleted from them. If the none of the contained
entitles ever changed, this will be indicated by white.

• Cyan icons are for functions that exit in both version
2.0 and version 2.7.2.

For program entities that are “new” to GCC version
2.7.2, different “reds” with various levels of saturation are



used to differentiate their “tenure” within the system. An
entity in vivid red came into the system relatively late, while
darker red means that entity has been in the system for sev-
eral releases.

At the left bottom of figure 4 we can see three new files
under “Scanner” subsystem. c-pragma.c first appeared
in GCC at version 2.3.3. It is the oldest among all three
files, so its red is the darkest. c-pragma.h first appears
in GCC at version 2.7.2, which means it is the youngest.
Thus its color is very fresh red. File cp/Input.c first
seen in GCC at version 2.6.3. It is later than c-pragma.c
but earlier than c-pragma.h. As the result, its icon has a
red color with saturation somewhere in the middle.

The frame on the right side of figure 4 shows another
style of software evolution visualization. It is based on the
landscape viewer used in PBS. It extends PBS’s schema by
adding evolution related entities and relations. Six new en-
tities are added to model new subsystem, delete subsystem,
changed subsystem, new file, delete file and changed file.
Also there are six new relations: new call, delete call, new
reference, delete reference, new implemented-by, and delete
implemented-by.

4.2.2 Origin Analysis

The origin analysis component applies both Bertillonage
analysis and dependency analysis to exam every “new”
function in the selected release with its immediate previ-
ous release to find out its “origin”, and examine all the
“deleted” functions with its immediate next release to find
out its “destination”. In some cases, source files will be
moved to new locations in the later releases, usually to new
directories, as a maintenance effort to reorganize the source
directory structure. In other cases, related source files are
given common prefix or suffix in their file names for easier
understanding of their responsibility in the system. Even
though the file content does not change, many files will have
a new name after the new naming scheme is adopted.

These types of changes to file path and file name make
traditional architectural comparison tools such as GASE
and KAC ineffective, because they treat a file with a dif-
ferent path or name as a different file. The result will be
many “new” files identified in the newer release. Our so-
lution to avoid this kind of confusion is to apply Bertillon-
age analysis on every function defined in the “new” file. If
the majority of the functions have “origin” functions that
are from the same file in the previous release, we can im-
ply that this file is the “origin” file of the selected “new”
file. Another solution is to perform call dependency analy-
sis at file level. Instead of checking the “callee list” change
of caller functions and “caller list” change of callee func-
tions, as in the call dependency analysis performed at func-
tion level, we examine the “callee list” change of files that

have call dependencies with this “new” file, or the “callee
list” changes of those files that this “new” files has call de-
pendencies with. The result is the potential ”origin” file for
the selected “new” file.

4.3 User Tier

Users interact with BEAGLE through user tier compo-
nents. These components handle user input and submit
queries to the logic tier, then organize and display the re-
sults on the screen. Here use a simple example to illustrate
the interaction between BEAGLE user interface and a user.
The software system under investigation is GNU C Com-
piler.

Figure 3. Query Interface

Initially, a list of history releases of GCC are displayed
in a web page, along with short description for each release,
such as the full release number and release date. A user can
select any two releases or a group of consecutive releases
over a period, and then request an architecture comparison,
as shown in Figure 3. The user interface component will
respond to the user’s request by sending a message to ver-
sion comparison engine in the logic tier. When the com-
parison is finished, the results are passed to the evolution
visualization component, where the difference between the
two software architectures are converted to graphical dia-
grams along with other detailed change information about
individual program entities. Finally, the diagrams and other
attributes are send back to the landscape viewer component
in the user tier for display and further navigation, as shown
in Figure 4.

More discussions on the design and implementation de-
tails of BEAGLE could be found in one of the authors’ mas-
ter thesis [25].

4.4 Case Study: From GCC To EGCS

EGCS is an experimental development project after the
release of GCC 2.7.x [12, 2] to provide better support for
the new 1998 ANSI C++ standard. There are many differ-
ences between the source code structure of GCC releases



and EGCS releases. For example, EGCS releases reorga-
nized their source directory structure, and also adopted a
new naming convention for the source files. These changes
make conventional architecture comparison methods, which
identify changed and unchanged program entities by com-
paring their names and directory location in both releases,
no longer applicable. With Origin Analysis we can analyze
whether a particular function in a EGCS release has a cor-
respondent from the GCC release, or it is newly written for
the EGCS project. We can also perform Origin Analysis at
the file level. This will examine every function defined in
a given file, then count how many functions already exit in
the previous release, as GCC 2.7.2.3 in this example, and
how many functions are new in EGCS 1.0. If majority of
the functions came from a single file in GCC 2.7.2.3, we
can conclude that this new file in EGCS 1.0 are inherited
from that file in GCC 2.7.2.3.

Figure 5 shows the result of a sample Origin Analysis
request on file gcc/c-decl.c. Among 70 files defined
in this file, 41 functions can be traced back to their ori-
gin functions defined in the previous GCC release by using
Bertillonage Analysis. With no exceptions, all the original
functions were defined in file c-decl.c of GCC 2.7.2.3.

Starting from EGCS 1.0, many source files that directly
contribute to the building of the C/C++ compiler were
moved to a new subdirectory called /gcc. To analyze the
architecture change at this magnitude (from GCC to EGCS),
Bertillonage Analysis has been demonstrated to be more
effective than Dependency Analysis. Dependency Analy-
sis assumes that when we analyze a “new” function, its
callers and callees from both current release and the pre-
vious release should be relatively stable, which means most
of the functions that have dependencies on this particular
function should not also renamed or related in the newer re-
lease. However, this is not the case when completely differ-
ent software architecture is adopted in EGCS 1.0 comparing
that of GCC 2.7.2.3, and most of the files and functions are
either renamed or related in the directory structure.

In our case study, we have performed Origin Analysis
on every source file of EGCS 1.0, which attempts to located
possible “origins” in its immediate previous release of GCC
2.7.2.3. The goal is to understand what portions of the old
GCC architecture is carried over to EGCS, and what portion
of EGCS architecture represents the new design. This test
takes 3 days to run on a Dual Pentium III 1GHz workstation.
Here we present the result for two representing subsystems
of GCC: Parser and Code Generator. One is from compiler
front-end, and another from the back-end. Both of them are
essential to the EGCS software architecture, so their evolu-
tion story is representation of entire EGCS system.

There are 30 files in the parser subsystem. Half of
them are header files, or very short C files that defined
macros. We will not consider these files in the analysis.

Of the remaining 15 files, we have three files considered to
be old GCC file carried over from v2.7.2.3. We say files are
“old” if more than 2/3 of functions defined in the file have
“origin” in the previous release, on the other hand, “new”
files should have less than 1/3 of carried over functions. In
the parser subsystem, we have seven of such “new” files.
All the other files are considered as “half-new, half-old”,
which numbered five. Overall, out of 848 functions defined
in the parser subsystem of EGCS 1.0, 460 are considered
“new”, and 388 are considered “old”. The “new” func-
tions counted as 56 percent of total functions. For a new
release of compiler software, this percentage of newly de-
signed code is really high, esp. for a subsystem that is based
on mature techniques such programming language parser.
Table 2 lists the complete result.

File Func New Old Type
gcc/c-aux-info.c 9 0 9 Mostly Old
gcc/fold-const.c 44 15 29 Mostly Old

gcc/objc/objc-act.c 167 17 150 Mostly Old
gcc/c-lang.c 16 14 2 Mostly New
gcc/cp/decl2.c 57 50 7 Mostly New
gcc/cp/errfn.c 9 9 0 Mostly New
gcc/cp/except.c 25 20 5 Mostly New
gcc/cp/method.c 30 26 4 Mostly New

gcc/cp/pt.c 59 57 2 Mostly New
gcc/except.c 55 52 3 Mostly New
gcc/c-decl.c 70 29 41 Half-Half
gcc/cp/class.c 61 31 30 Half-Half
gcc/cp/decl.c 134 84 50 Half-Half
gcc/cp/error.c 31 16 15 Half-Half
gcc/cp/search.c 81 40 41 Half-Half

Table 2. Origin analysis - parser

Table 3 lists the result of the Origin Analysis on the
Code Generator subsystem. Out of the five files that contain
function definitions, three files are sonsidered “new” by the
analysis, and the rest two are considered “old”. Overall, 84
percent of the functions defined in Code Generator subsys-
tem are newly written. This percentage is much higher than
the Parser subsystem. From these results, we can conclude
that EGCS 1.0 has a significant portion of the source code
that were newly developed comparing to the GCC release
that it is suppose to replace, especially for back-end subsys-
tems.

File Func New Old Type
gcc/cplus-dem.c 36 36 0 Mostly New
gcc/crtstuff.c 5 5 0 Mostly New

gcc/insn-output.c 107 95 12 Mostly New
gcc/final.c 33 20 13 Half-Half

gcc/regclass.c 20 12 8 Half-Half

Table 3. Origin analysis - code generator



 

Figure 4. Architecture Comparison

Figure 5. Origin Analysis on EGCS 1.0



5 Conclusions

The main contribution of this paper is to demonstrate
how we can conduct effective empirical study on software
evolution using an integrated approach, with an emphasis
on the evolution of software architecture and internal struc-
ture of program components. We have constructed an inte-
grated platform that automates the history data collection,
interpretation, and representation processes. It incorporates
different research methods such as evolution metrics, soft-
ware visualization, and structural evolution analysis tools to
allow the user to examine the evolution patterns of software
systems from various aspects. We also developed a con-
cept of origin analysis as a set of techniques for reasoning
about structural and architectural changes when the newer
system release adopts a complete new source code structure
or naming scheme.

The results of this paper and the BEAGLE environment
we have implemented enable us to conduct large scale em-
pirical studies on software projects with long and successful
histories to expand our knowledge on software evolution.

One of the possible extensions to BEAGLE is to inte-
grate it with web-based source control system, so that when
new code is checked in, the architecture facts will be auto-
matically extracted from the new source code and stored in
the BEAGLE’s data repository. The submitter could able
then view the changes to the system architecture shortly af-
ter (s)he submitted the new code, so that the impact of the
new code on the overall system structure is aware by herself
and others working on the project.

References

[1] E. Burd and M. Munro. An initial approach towards mea-
suring and characterizing software evolution. In Proc.
of the Sixth Working Conference on Reverse Engineering
(WCRE’99), 1999.

[2] E. by Chris DiBona, S. Ockman, and M. Stone. Open
Sources: Voices from the Open Source Revolution. read at
http://www.oreilly.com/catalog/opensources/book/tiemans.html.
O’Reilly and Associates, Cambridge, MA, U.S.A., 1999.

[3] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering approach combining metrics and program visu-
alization. In The 6th Working Conference on Reverse Engi-
neering (WCRE’99), 1999.

[4] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mocku. Does code decay? assessing the evidence from
change management data. IEEE Transactions on Software
Engineering, 27(1), January 2001.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[6] H. Gall, M. Jazayeri, R. Kloesch, and G. Trausmuth. Soft-
ware evolution observations based on product release his-

tory. In Proc. of the 1997 Intl. Conf. on Software Mainte-
nance (ICSM ’97), 1997.

[7] H. Gall, M. Jazayeri, and C. Riva. Visualizing software
release histories: The use of color and third dimension.
In Proc. of the IEEE Intl. Conf. on Software Maintenance
(ICSM99), 1999.

[8] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. In Proc. of the Intl. Conf. on Software
Maintenance (ICSM’00), 2000.

[9] T. L. Graves, A. F. Karr, J. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans-
actions on Software Engineering, 26(7), July 2000.

[10] R. Holt. Pbs: Portable bookshelf tools. available at
http://swag.uwaterloo.ca/pbs/, 1997.

[11] R. Holt and J. Pak. Gase: visualizing software evolution-
in-the-large. In Proc. of the 3rd Working Conf. on Reverse
Engineering (WCRE’96), 1996.

[12] http://www.gnu.org/software/gcc/. GCC homepage. Web-
site.

[13] J. P. D. Keast, M. G. Adams, , and M. W. Godfrey. Visual-
izing architectural evolution. In Proc. of ICSE’99 Workshop
on Software Change and Evolution (SCE’99), 1999.

[14] K. Kontogiannis. Evaluation experiments on the detection
of programming patterns using software metrics. In Work-
ing Conference on Reverse Engieneering (WCRE’97), Ams-
terdam, Netherlands, 1997.

[15] M. M. Lehman. Programs, life cycles and laws of software
evolution. In Proc. IEEE Special Issue on Software Engi-
neering, pages 1060–1076, 1980.

[16] M. M. Lehman. Metrics and laws of software evolution - the
nineties view. In Proc. Metrics 97 Symp, 1997.

[17] A. Mockus, S. G. Eick, T. Graves, and A. F. Karr. On mea-
surement and analysis of software changes. Technical re-
port, Bell Labs, Lucent Technologies, 1999.

[18] S. Muthanna, K. Kontogiannis, K. Ponnambalam, and
B. Stacey. A maintainability model for industrial software
systems using design level metrics. In Working Conference
on Reverse Engieneering (WCRE’00), 2000.

[19] D. E. Perry. Dimensions of software evolution. In Proc. of
the 1994 Intl. Conf. on Software Maintenance (ICSM’94),
1994.

[20] J. F. Ramil and M. M. Lehman. Metrics of software evolu-
tion as effort predictors - a case study. In Proc. of the Intl.
Conf. on Software Maintenance (ICSM’00), 2000.

[21] T. Systa, P. Yu, and H. Mller. Analyzing java soft-
ware by combining metrics and program visualization. In
Conference on Software Maintenance and Reengineering
(CSMR’99), 2000.

[22] L. Tahvildari, R. Gregory, and K. Kontogianni. An approach
for measuring software evolution using source code features.
In Proc. of Sixth Asia Pacific Software Engineering Confer-
ence (APSEC’99), 1999.

[23] E. Thomsen. OLAP solutions: Building Multidimensional
Information Systems. John Wiley and Sons, New York,
U.S.A., 1997.

[24] J. B. Tran. Software architecture repair as a form of preven-
tive maintenance. Master’s thesis, University of Waterloo,
1999.

[25] Q. Tu. On navigation and analysis of software architecture
evolution. Master’s thesis, University of Waterloo, 2002.


