
1

An Integrated Approach
for Studying

Architectural Evolution

Qiang Tu and Michael Godfrey

Software Architecture Group (SWAG)

University of Waterloo

2

Overview

Challenges in studying software
evolution

Motivation of our approaches

“Origin analysis” and BEAGLE tools

Case study – from GCC to EGCS

3

Challenges in Studying
Software Evolution

Challenge 1: Modeling and Analysis
How to model/measure changes

“Additive” and “Invasive”

What is the implication of changes

Challenge 2: Tool Support
Visualization and navigation

Integrated environment

Challenge 3: Data Management
What data are relevant

How to efficiently store and query data 4

Motivation

Entity – Relation – Version data model
Based on source code and reverse engineering
Entity and Relation

Extracted and “lifted” architecture facts
Atomic and composite entities

Release
Extract facts for every release of the software
system
Add a “release” column to [entity a, entity b,
relation] tuple

Store in relational database
Query with SQL statements

5

Motivation (cont.)
Evolution model for “invasive” changes

Additive changes
Daily development activities

Adding, removing and modifying -
Code lines / Functions / Files / Subsystems

Assume a change in name/location of a entity
means the old is out and a new is in

Study with diff and relational calculus

Software
Change

Additive Invasive

6

V1 V2

F1
F2

F3

F4
F5

F1

F3

F4F5

F6

New entities: F6

Deleted entities: F2

Changed entitles: diff on pairs with same function name

Changed relations: grok or SQL

7

Motivation (cont.)
Invasive changes

Structural and architectural changes

Results of :
Refactoring / code cleaning

Redesign of the system

Break old name/location model

Difficulties:
How to define an entity to be new?

How to measure the difference between the
different versions of the same entity?

8

V1 V2

F1

F2

F3

F4
F5

F1

Fh

FfFx

F4

FsSS1

SS2

Possible solutions:

• match “fingerprints”

• relations with stable entities

9

Motivation (cont.)

Build a set of tools and integrated
environment

Aid in understanding how software evolves

Compare the architecture of multiple
releases

Additive

Invasive

Visualize and navigation tools

Analyze the meanings of changes

10

Beagle Environment

11

Change Data Repository
Entity Attribute

PK Entity ID

Entity String

Configuration Attribute

PK Configuration Key

Configuration String

Version Number

PK Release Key

Series
Major
Minor
Bugfix Major
Bugfix Minor

Release Date

PK Release Key

Year
Month
Day

Function Metrics

PK Function ID
PK File ID
PK Release Key

Line of Code
Line of Comment
Cyclomatic
Max Nesting
Fan-In
Fan-Out
Global Variable Access
Global Variable Update
Parameter
Parameter Update
Local Variable
S-Complex
D-Complex
Albrecht
Kafura
Input
Output

File Metrics

PK File ID
PK Release Key

Line of Code
Average Cyclomatic
Average Line of Code
Average Line of Comment
Average Fan-Out
Functions Defined
Input
Output
Global Variable Access
Maintainance Index

Low-Level Fact

PK Release Key
PK Configuration Key
PK Relation
PK Entity A
PK Entity B

Entity B Property

File-Level Fact

PK Release Key
PK Configuration Key
PK Relation
PK Entity A
PK Entity B

High-Level Fact

PK Release Key
PK Configuration Key
PK Relation
PK Entity A
PK Entity B

Ss-Level Fact

PK Release Key
PK Configuration Key
PK Relation
PK Entity A
PK Entity B

Entity-Level File-Level

High-Level Arch-Level

12

“Origin Analysis”
Suppose that:

F is the name of a software
entity (e.g., function, type,
global variable) of version
Vnew of a software system.
There is no entity of the
same name/kind in the
previous version Vold

We define origin analysis as
the process of deciding:

if F was newly introduced
in Vnew,or
if it should be more
accurately viewed as a
changed/moved/ renamed
version of a differently
named entity of Vold

G

Y X

ZVold

F

Y X

ZVnew

???

13

Origin analysis: Two techniques
Entity analysis (i.e., metrics-based Bertillonage)

For each “new” entity f:

Calculate combined Euclidean distance
from each “deleted” entity for five
metrics:
(S-Complexity, D-Complexity, Cyclomatic,
Albrecht, Kafura)

[Kontogiannis]

Select top k matches; compare entity
names.

14

Origin analysis: Two techniques
Relationship analysis (e.g., calls, data refs)

For each “new” entity f:
Find Rf, set of all entities that call f that are
present in both versions.

For each g ∈ Rf, calculate Qg, set of all
“deleted” entities that g calls in the old version.

Look at intersection of the Qgs; these are good
candidates.

B()

C()

A()

D()

E()

G()

N()

Release
v2.0

B()

G()

F()

E()

N()

Release
v1.0

15

Efficiency considerations
When comparing Vnew to Vold, need to find the
entities that seem to have been added and
deleted.

These sets are fast to determine.
Most subsequent calculations involve only these
small subsets of the entire entity space.

Computationally expensive approaches for
clone detection (e.g., graph matching) were not
considered.

Can’t pre-compute easily.
Precise matching not worth the effort, as it doesn’t
seem to help much for this task.

16

Efficiency considerations
Entity analysis:

Entity info is generated by fact extractor and metrics tool.
Info is generated only once per version, when system is checked
into repository.

Performing entity analysis is a matter of a simple numerical
calculation on a small set of “likely candidates”.

Relationship analysis:
Relationship info (who-calls-whom, who-inherits-from-whom,
etc.) is generated by fact extractor.

Info is generated only once per version, when system is checked
into repository.

Computation and comparison of relational images is fairly fast.
Special-purpose tool (grok) and relatively small amount of data.

17

Usage of BEAGLE

At system check-in:
Populate database with “facts” and metrics info
from various tools.
grok scripts “lift” facts to file/ subsystem
/architectural level.

At runtime:
PBS engine for visualization/navigation.
Java-based infrastructure using DB/2, VA-
Java, IBM-Websphere.

18
Visualize the diff

between two versions

Metric history for
selected entitles

Overview
of system
structure
changes

19 20

21

Case study: gcc/g++/egcs
Have extracted full info for 29 versions of
gcc/g++/egcs

Want to examine major breaks in development to see how well
origin analysis works.

EGCS v1.0 was forked from the GCC v2.7.2.3
codebase

EGCS project goals:
C++ compiler more ANSI compliant,
new FORTRAN front-end,
new optimizations and code-generation algorithms, …

… and EGCS introduced a new directory structure and a
new file naming scheme, in addition to all of the other
redesign and restructuring.
Naïve analysis indicated “everything old is new again”

22

Case study: gcc/g++/egcs

Case study: gcc/g++/egcs
Example:

The EGCS 1.0 Parser
subsystem contains 15
(non-trivial)
implementation files,
comprising 848 functions.

Using origin analysis and
common sense, we
decided that about half of
the “new” functions
weren’t new.

That’s still a massive
amount of change for a
new release of a compiler!

File # Fcns # New # Old % New
gcc/cp/errfn.c 9 9 0 100%
gcc/cp/pt.c 59 57 2 97%
gcc/except.c 55 52 3 95%
gcc/cp/decl2.c 57 50 7 88%
gcc/c-lang.c 16 14 2 88%
gcc/cp/method.c 30 26 4 87%
gcc/cp/except.c 25 20 5 80%
gcc/cp/decl.c 134 84 50 63%
gcc/cp/error.c 31 16 15 52%
gcc/cp/class.c 61 31 30 51%
gcc/cp/search.c 81 40 41 49%
gcc/c-decl.c 70 29 41 41%
gcc/fold-const.c 44 15 29 34%
gcc/objc/objc-act.c 167 17 150 10%
gcc/c-aux-info.c 9 0 9 0%

TOTAL 848 460 388 54%

24

Conclusion and Open Questions

Beagle: An Integrated Platform
What are other models for additive and invasive
changes?

Requires more case studies and validation.

Origin Analysis
Requires human intervention to make intelligent
decisions.
Techniques need to be fast and approximate. We
need more of them.

IWPSE-03

2003 Intl. Workshop on Principles
of Software Evolution

To be held Sept 1-2, 2003 in Helsinki,
Finland

Co-located with FSE/ESEC 2003
CFP to appear in early 2003

General chair:
Tommi Mikkonen

Program co-chairs:
Motoshi Saeki
Mike Godfrey

