An Integrated Approach
for Studying
Architectural Evolution

Qiang Tu and Michael Godfrey
Software Architecture Group (SWAG)
University of Waterloo

[Z5] i=

1

Overview

A Challengesin studying software
evolution

A Motivation of our approaches
A*QOrigin analysis’ and BEAGLE tools

A Case study — from GCC to EGCS

o Software Evolution
Challenge 1: Modeling and Analysis

A How to model/measure changes
A“Additive” and “Invasive”
A What is the implication of changes
Challenge 2: Tool Support
A Visualization and navigation
A Integrated environment

Challenge 3: Data Management

A What data are relevant
A How to efficiently store and query data

Challengesin Studying -

Motivation

A Entity — Relation — Version data model
A Based on source code and reverse engineering
A Entity and Relation

A Extracted and “lifted” architecture facts
A Atomic and composite entities
A Release
A Extract facts for every release of the software
system
A Add a“release” column to [entity a, entity b,
relation] tuple
A Storein relational database

A Query with SQL statements

Motivation (cont.)
A Evolution model for “invasive” changes

Software

Change
Additive Invasive

A Additive changes
A Daily development activities
A Adding, removing and modifying -
A Code lines/ Functions/ Files / Subsystems

A Assume a change in name/location of a entity
meansthe old isout and anew isin

A Study with diff and relational calculus

V2

New entities: F6

Deleted entities: F2

Changed entitles: diff on pairs with same function name
Changed relations: grok or SQL

6

Motivation (cont.)

A Invasive changes
A Structural and architectural changes
A Results of :
A Refactoring / code cleaning
A Redesign of the system
A Break old name/location model
A Difficulties:
A How to define an entity to be new?

A How to measure the difference between the
different versions of the same entity?

Possible solutions:
 match “ fingerprints’

* relations with stable entities

Motivation (cont.)

A Build a set of tools and integrated
environment
A Aid in understanding how software evolves

A Compare the architecture of multiple
releases
A Additive
Alnvasive
A Visualize and navigation tools

A Analyze the meanings of changes

Beagle Environment

B & e Flo 5 [s oo @% 7ot

7| 100p.1 (modute)

Change Data Repository

‘Enmy String

Entity-Level File-Level]
PK | Release Key PK [Release Key
PK | C Key | |PK [c K
PK | Relation PK | Relation File Metrics
PK | Entity A PK | Entity A o (oD
PK | Entity B PK | Entity B PK | Release K¢
o Entity B Property Line of Code
Fan-out Average Cyclomatic
Global Variable Access [#———— [High-Level [Arch-Level —
le Update PK | Release Key. PK | Release Key.
PK | C Key || PK K
PK |Relation PK |Relation
PK | Entity A PK | Entity A
PK [Entity B PK |Eniiy B
Maintainance Index

~,

Release Date

Version Number

Pk | Release Key

PK | Release Key

Series

Year
Month
Day

11

- 3 g o g
Origin Analysis
Suppose that:
A F isthe name of a software
entity (e.g., function, type,
global variable) of version v
V..., of asoftware system. new

new
A Thereis no entity of the

(z)
‘l
previous version V, <D, l)

same name/kind in the

We define origin analysis as)

the process of deciding:

A if F was newly introduced vold Z

inV,.,.or

A if it should be more G
accurately viewed as a

changed/moved/ renamed
version of adifferently

named entity of V4

Origin analysis: Two techniques

Entity analysis (i.e., metrics-based Bertillonage)
A For each “new” entity f:

A Calculate combined Euclidean distance
from each “deleted” entity for five
metrics:

(S-Complexity, D-Complexity, Cyclomatic,
Albrecht, Kafura)

[Kontogiannis]
A Select top k matches; compare entity
names.

Origin analysis. Two techniques
Relationship analysis (eg., calls, datarefs)
A For each “new” entity f:
AFind Ry, set of all entitiesthat call f that are

present in both versions.
AForeachg e Ry, calculatng, set of all
“deleted” entitiesthat g callsin the old version.
A Look at intersection of the Qgs these are good
candidates.

Release
v10

Efficiency considerations

A When comparing V., to V,,, needto find the
entities that seem to have been added and
deleted.

A These sets are fast to determine.

A Most subsequent calculations involve only these
small subsets of the entire entity space.

A Computationally expensive approaches for
clone detection (e.g., graph matching) were not
considered.

A Can't pre-compute easily.
A Precise matching not worth the effort, asit doesn’t
seem to help much for this task.

15

Efficiency considerations

A Entity analysis:
A Entity info is generated by fact extractor and metrics tool.
A Info is generated only once per version, when system is checked
into repository.
A Performing entity analysis is a matter of a simple numerical
calculation on asmall set of “likely candidates’.

A Relationship analysis:
A Relationship info (who-calls-whom, who-inherits-from-whom,
etc.) is generated by fact extractor.
A Info is generated only once per version, when system is checked
into repository.
A Computation and comparison of relational imagesisfairly fast.
A Special-purpose tool (grok) and relatively small amount of data.

16

Usage of BEAGLE

At system check-in:

A Populate database with “facts” and metricsinfo
from various tools.

A grok scripts “lift” factsto file/ subsystem
[architectural level.

At runtime:
A PBS engine for visualization/navigation.

A Java-based infrastructure using DB/2, VA-
Java, IBM-Websphere.

17

Metric history for
selected entitles

Overview
of system
structure
changes

Visualize the diff
between two versions

3 Tods i
Gbak - = - D [9) 4} Qoeach GlFavores Pieda |- S @ - A ¥ @A KR
Agtess [T e =
Google-| Sl pseacvies. Rezeinoe || @z iio - e < Aaia
occ20 s AL A Bref History of Fuaction fnal_start_function ia Fl fina.c.
3 Conseraraonss
B comeze
B treic Release 7‘c‘“ed°f c"‘"e "fﬂ NMEX Cyclomatic | SComplex | DComplex | Albrecht | Kafura
= aterstren ode | Comme L
3 app_disable. GCC 1371
s | 9 1 4 25 21 122 | 744
Gec 138
gzl @ 16 2 5 4 4 123 | 205
Gec 139
Geels | s 16 2 5 4 4 123 | 205
Gec 140
s | B 16 2 5 4 4 123 | 2025
Gec 141
ey | 16 2 5 4 4 123 | 2025
Gec L4z
g gel | = 16 2 5 4 4 123 | 205
= et rencmber 1008 T
B ot rerunter ogs on 51 ” 2 4 4 233 104 | 57
B criy_eat reps.used L12/1992)
1 cutat_scr_const Gocal
3 s sress arsns | v 2 4 4 2% R [
L
GCC222
gee222 | 5 n 2 4 4 233 08 | 7
Gec2ss
geeazs | » n 2 3 4 2 w0 |
= potte_unctin Gocoa
ot archos 52 7 2 3 4 2 00 | 5
= | | @aoisss
@ [Bl

19

Ghack - o - @ [3) | Quearch [alFavorkes Pieda |- S W - H ¥ A R

s [0 | &
Google [S @senchwieb Reeacioie | @ree o - B - Ao
OPTINIZE 1z nomcero 1t ve showld eliminate redundan:
5 GCC20 (22902 ALL test and compare insmns. */
2 CodeGenerator 55
B coteci2c
B treic final_svarc_tunction (first, tile, optimize)
S ser e o izons
3 epp_ctsable FILE *file;

0 coperetie int optimize;

«
g et block_depeh = 0;

B aem nsn_cout -

. cor_sequence Length this_is_ssn_operands = 0;
B end

2 thal Hifdes NON_SAVING_SETINP
/% A function that calls secimp should save and restore all the
call-saved registers on a system uhere longjmp clobbers them. */
if (NON_SAVING_SETJMP &5 current_function_calls_setimp)
«

ine 1
=
= for (i = 0; 1 < FIRST_PSEUDO_REGISTER; i)
st St it (tcall_used regs(i] 65 lcall fixed regs(i))
= e recmbers038 o :
8 |eat_renumber_regs_insn >
8 only_jeaf_regs_used Lot
=cmilaas iua /* Tnitinl Line mmber ie supposed o be autp:
it _akess betore the Zunction's prologue end
B output_sem_insn 30 that the function's address will not appear to be
2 ot el atatement of the preceding function
= a if (NOTE_LINE NUMBER (first) '= NOTE_INSN_DELETED)
i oparan osoes «
= = it (vrite_synhols == SDE_DERUG)
S /% For aab, lev's not, hur say ve dsd.
e Xl Ve need to sec lase_linenum for sdbous_tusction begin,
= but ve can'c have s accual line mumber before the .bf symbol.
& [Bt
20

Casestudy: gcc/g++/egcs

A Have extracted full info for 29 versions of
gcc/g++/egcs
A Want to examine magjor breaks in development to see how well
origin analysis works.

A EGCSv1.0 was forked from the GCC v2.7.2.3
codebase
A EGCS project goals:
A C++ compiler more ANSI compliant,
A new FORTRAN front-end,
A new optimizations and code-generation algorithms, ...
A ... and EGCS introduced a new directory structure and a
new file naming scheme, in addition to al of the other
redesign and restructuring.

A Cl’\\éail've analysisindicated “everything old is new again”

21

Loguna] ausstes |

Casestudy: gecc/g++/egcs
A Example:

A TheEGCS 1.0 Parser

subsystem contains 15 File #Fcns #New #0Id % New
R gec/cp/erren.c 9 0 100%
_(non-terl a) . . gee/cp/pt.c 59 57 2 97%
implementation files, gec/except.c 55 52 3 es%
comprising 848 functions. ~ gec/cp/aeciz.c 57 50 7 88%
gee/c-lang.c 16 14 2 88%

gec/cp/method. ¢ 30 26 4 87%

: . : gec/cp/except.c 25 20 5 80%

4 Using origin analysis and gee/cp/decl.c 134 84 50 63%
common sense, we gce/cp/error.c 31 16 15 52%
decided that about half of gec/cp/class.c 61 31 30 51%
w o . gee/cp/search.c 81 40 41 49%
the “new” functions gee/c-decl.c 70 20 4 4%
weren't new. gcc/£old-const.c 44 15 29 34%
gec/objc/objc-act.c 167 17 150 10%

gee/c-aux-info.c 9 0 9 0%

TOTAL 848 460 388 54%

A That's still amassive
amount of changefor a
new release of acompiler!

Conclusion and Open Questions
A Beagle: An Integrated Platform

A What are other models for additive and invasive
changes?
A Requires more case studies and validation.

A Qrigin Analysis
A Requires human intervention to make intelligent
decisions.
A Techniques need to be fast and approximate. We
need more of them.

|WPSE-03

A 2003 Intl. Workshop on Principles .
of Software Evolution £ & 4
fKaxn f A

A To be held Sept 1-2, 2003 in Helsinki,

Firland esec
A Co-located with FSE/ESEC 2003 f?ﬁ&
A CFP to appear in early 2003 € om

A General chair:
A Tommi Mikkonen
A Program co-chairs:
A Motoshi Saeki
A Mike Godfrey

