
1

CSER / CASCON 1999

Exchange formats: Some problems,
a few results, and a cool name

Michael Godfrey
Ivan Bowman
 and others …
University of Waterloo

November 7, 1999 CSER / CASCON 1999 2

Exchange Formats

n What?
n Why?
n How?
n Whose?
n Problems?
n Volunteers?

November 7, 1999 CSER / CASCON 1999 3

References

n “Connecting architecture reconstruction
frameworks”, by Bowman, Godfrey, and Holt.
– Proc. of CoSET ‘99, to appear in Journal of

Information and Software Technology.

n “An architecture for interoperable program
understanding tools” (CORUM), by Woods et al.
– Proc. of IWPC ‘98

n “CORUM II”, by Kazman, Woods, and Carrière.
– Proc. of WCRE’98.

November 7, 1999 CSER / CASCON 1999 4

What?

n CASCON ’98: CSER members identified
opportunities for re-use between tools

n Want to be able to map software “facts”
extracted by different tools to a common
format.

n Want different levels of abstraction
supported (code, architecture, etc.)

November 7, 1999 CSER / CASCON 1999 5

Why?

n Different strengths, bugs, detail level,
robustness, languages supported, …
– acacia, cfx, Datrix, Rigi, Dali

n Research cross fertilization, validation
n Plug ‘n play subtools (esp. new uses)

– extractor, reasoning engine, clusterer,
visualizer

n Commercial linkage
November 7, 1999 CSER / CASCON 1999 6

My Selfish Reason

n Want to opportunistically steal tools for
use in the BEAGLE system
– BEAGLE models evolution of software

systems over time.
– Need extractors, fact manipulators,

visualizers, etc.
– Dealing with scale, incrementality, flexible

middle are key issues.

2

November 7, 1999 CSER / CASCON 1999 7

Exchange Format Requirements

n Support multiple source languages
n Scale to large systems (e.g., 10 MLOC)
n Provide mapping to source code
n Support static & dynamic dependencies
n Incremental approach
n Must be extensible, allowing new

schemes to be defined as needed

November 7, 1999 CSER / CASCON 1999 8

Architectural Reconstruction

Source
 Code

Executing
System

Source
Control

System Artifacts

Scanning

Parsing

Profiling

Change
Reporting

Extractors

Extracted
Facts

Repository View Generation

Visualization
Manipulation

Architecture

November 7, 1999 CSER / CASCON 1999 9

TAXForm –TA Exchange Format

n Idea: provide a common format and
converters to allow tools to interoperate

n Two parts to an exchange format:
– Syntax of data (representation in files)
– Semantic structure (schemas)

n We chose TA syntax (others are attractive)

n Tool developers may define their own
schemas as needed

November 7, 1999 CSER / CASCON 1999 10

TAXForm Utopia

PBS Extractor
(cfx)

Rigi Extractor
(rigiparse)

Dali Extractor
(SNiFF+)

TAXForm
Repository

PBS Viewer
and Abstraction

Tools

System
Artifacts

Bunch
Clustering Tool

Rigi SHriMP
Viewer

Dali to
TAXForm
Converter

Rigi to
TAXForm
Converter

cfx to
TAXForm
Converter

Bunch /
TAXForm
Converter

TAXForm to
Rigi Converter

November 7, 1999 CSER / CASCON 1999 11

Transforming Between Schemas

Universal

High-Level

Procedural

PL/I C

Object-Oriented

C++ Java

Dali C Rigi CPBS C

November 7, 1999 CSER / CASCON 1999 12

TAXform — High level schema

Module

depends-on

Subsystemcontains

contains

3

November 7, 1999 CSER / CASCON 1999 13

TAXform — Procedural schema
Source

File
uses
file

Data Type

defines

Procedure Data

defines
defines

uses
type

uses
data

defines defines

uses
procedure

uses type

November 7, 1999 CSER / CASCON 1999 14

Problems

n Different extractors use different:
– syntax (and storage formats)
– semantic models (schemas)

November 7, 1999 CSER / CASCON 1999 15

Problem: Naming

n Each entity must have unique ID
n Source languages may allow two code

elements to have the same name
– typedef int T;
– struct T { ... };

n To combine facts, we need a common
naming scheme

n Ivan has a Java scheme; C/C++?
November 7, 1999 CSER / CASCON 1999 16

Problem: Line Numbers

n We require a mechanism to get from an
entity back to source code

n An obvious solution : file + line#
– Want same file name on different

machines
– Some entities are defined on a range of

lines, or non-contiguous ranges of lines
(e.g., namespaces)

November 7, 1999 CSER / CASCON 1999 17

Problem: Resolution

n For each reference in source code, we
can determine the reference target

n Several resolution strategies are used:
– No resolution (each reference is an entity)
– Resolved to declaration (in a header file)
– Resolved to static definition (entity body)
– Resolved to dynamic definition (virtual

functions, pointers)
November 7, 1999 CSER / CASCON 1999 18

Some dry runs

n rigi2pbs, acacia2pbs* (C++) [Bowman]
n dali2pbs* [Carrière]
n cia2rigi [KAC]
n cia2pbs, acacia2pbs (C) [Godfrey]
n acacia2pbs (C++) [Lee, Fung]

* special purpose use

4

November 7, 1999 CSER / CASCON 1999 19

Some experiments [Bowman]

System Size
(KLOC)

Language Extractor

Jikes 77 C++ Acacia

Linux 800 C Dali, cfx

Mozilla 904 C Rigi

Nachos 10 C++ Acacia

November 7, 1999 CSER / CASCON 1999 20

acacia2pbs — An Experiment

n My immediate goal:
– want to be able to use CIA/acacia extractor

as plug-in replacement for cfx within PBS
(i.e., generate factbase.rsf)

– cfx gets some facts wrong, doesn’t
extract enough detail for arch. repair [Tran]

n Also, get some experience for BEAGLE

November 7, 1999 CSER / CASCON 1999 21

acacia2pbs — Nuts and bolts

n Acacia extractor similar to cfx:
Ccia -D<arg> -I<arg> *.c

generates entity.db, relationship.db

n Use SQL-like queries to get raw text
output:

cdef -u func - def=dec
cref -u - - m -

produces “;” delimited textual output

November 7, 1999 CSER / CASCON 1999 22

acacia2pbs — Nuts and bolts

n Pretty much 1:1 (1:n) relationship with
factbase.rsf output via awk

n … but “linkcall” harder as
– acacia already does resolution of

“f calls g” to the function defs;
cfx does resolution at a later stage

– no transitive closure for “includes”
Solution: simple grok program

November 7, 1999 CSER / CASCON 1999 23

acacia2pbs — Nuts and bolts

n Unique IDs and fake polymorphism:
– May be multiple function defs named “f”
– How to disambiguate?

n PBS just assumes it won’t happen.
n Acacia uses hashing to unique IDs, but

not clear what it does on collisions.
n I use “foo.c#f” as entity name,

demangle at end of translation.
November 7, 1999 CSER / CASCON 1999 24

acacia2pbs — Summary

n Works well; adds more detail than cfx;
acacia factbase slightly more accurate

n Example: ctags-3.0 (10 KLOC, 5000 facts)

– cfx/fbgen: 12 seconds to create
factbase.rsf on fast Sparc

– acacia2pbs : 9 seconds to create acacia
database + 30 seconds for my naïve
scripts to convert it to factbase.rsf

5

November 7, 1999 CSER / CASCON 1999 25

Volunteers?

n What real interest is there?
It sounds like a good idea ...

n How / why will your group use a
common exchange format?

n Lots of talk, some (mostly isolated)
action…

n “Good enough” good enough?

