
A Lightweight Architecture Recovery Process

Davor Svetinovic and Michael Godfrey
Software Architecture Group

University of Waterloo
Waterloo, Ontario, N2L 3G1, CANADA

Tel. (519) 888-4567 x5388�
dsvetinovic, migod � @uwaterloo.ca

ABSTRACT
In this paper, we present an overview of a lightweight ap-
proach for software architecture recovery. The main advan-
tages of the process are the lightweight recovery of architec-
tural semantics, and the compatibility with the highly iter-
ative adaptive development processes that involve extensive
architectural refactorings.

Keywords
Software Architecture, Reverse Engineering, Product Lines,
Agile Development Processes

1 Introduction
One of the most controversial aspects of Extreme Program-
ming(XP) and other lightweight development methodolo-
gies [5] is an almost complete rejection of formal and semi-
formal upfront design activities. This rejection is backed up
by the arguments that these design activities do not work
very well in practice due to a variety of technological, man-
agement and human factors:

� Most developers like to concentrate exclusively on pro-
gramming.

� Design documents are almost never in synchronization
with code.

� During active development, lot of time is spent updating
design documents.

� The produced documents are not used much by pro-
grammers.

� Tool support for roundtrip engineering is not good
enough.

The main design activities and principles practiced in
lightweight processes are:

� Use of CRC cards [4] for initial, quick design.

� No design documentation. Code and programming con-
ventions are considered to be sufficient for design re-
covery. CRC cards are not kept.

� Use of system metaphor (common problem domain vo-
cabulary) for design abstraction purposes.

� Simplicity and adaptive design approach — Simple de-
sign and refactoring make system easier to change to
accommodate new requirements than to try to predict
them and build an infrastructure to support them [5].

� Continual refactoring [6].

This approach is most useful for adaptive design [5] of small
and mid-sized applications. However, in order to make the
process scalable, a more systematic approach to architecture
design must be introduced.

2 Agile Architecture Development Process
We are currently working on a process whose main goal is
to be an efficient, lightweight, and cost effective choice for
architecture development. The target development processes
are the lightweight ones, and ones without a formal architec-
ture design component. Besides preserving the lightweight
development principles [11], the process aims to satisfy fol-
lowing goals:

� Minimal additional developer training involved.

� Risk-free incorporation in the development process

� Robust roundtrip support.

� As much as possible based on the most accepted pro-
gramming and design practices.

� Minimize design activities and maximize program-
ming.

� Minimal design documentation.

The process consists of three sub-processes in order to in-
crease the compatibility and integration with different de-
velopment processes. The process presented in the rest of
this paper is concerned with architecture recovery. The sec-
ond process is a lightweight forward architecture design pro-
cess that balances predictive and adaptive design principles.
The third one is an incremental product line design process,
which is aimed at the design of product lines for a set of small
to mid-sized systems. Some of the methodologies and prin-
ciples that have influenced the development of the method
are described in related work [1, 2, 3, 4, 7, 8, 9, 10].



All three processes emphasize accommodation of very short
development cycles, extensive refactoring, and incremental
work.

3 Architecture Recovery
Very short development cycles and refactoring result in con-
stantly changing architecture. In order to deal with archi-
tecture drift and erosion in such short cycles, there is a need
for an efficient architecture recovery process, which recovers
not only the structure of the system, but also the rationale of
that structure.

Architectural rationale is recovered and presented through
the use of functional and quality attributes and goals. Goal
and attribute recovery is performed through the merging of
the problem domain architecture and the concrete system ar-
chitecture. All the information is encapsulated within the
code and can be automatically recovered through the use of
tools, which are described later.

The main recovery activities are:

1. Derivation of an initial set of goals and conceptual ar-
chitecture, achieved through the study of available doc-
umentation and stakeholder interviews.

2. Extraction of the actual code level structure of the sys-
tem using a tool like PBS [10]. This information is used
in later steps to present the concrete static architecture
of the system.

3. Iterative interface-driven goal-responsibility code in-
strumentation, which is used to recover and analyze
concrete system use-cases. This use-case recovery can
be automated with proper tool support. Preconditions,
post-conditions, and invariants are introduced to cap-
ture the goal and attribute constraints.

4. Documentation of architecture supported attributes us-
ing separate descriptions, which include traceability in-
formation.

5. Representation of the concrete architecture and its ratio-
nale using the information obtained in previously men-
tioned activities. This information can be presented us-
ing various formats (i.e., decision/rationale architecture
diagrams).

The tool mentioned in step 3 can be enhanced to recover and
manage the information captured in step 4, and to provide
full navigability and traceability of the architectural presen-
tation.

The major advantages of the approach are that it can be used
to recover the architecture of the system incrementally, and
that it relies only upon the use of goals and attributes to cap-
ture the semantics of the architecture. If the responsibili-
ties and constraints are used and documented during forward

system design, the architecture and its semantics can be au-
tomatically recovered and kept updated.

In addition to the recovery of the architecture, the application
of the process results in the higher quality of the code since it
relies upon the use of proven software engineering practices.

4 Conclusion
The integration of responsibility-driven design and Design
by Contract with attribute theory, and their automated reverse
application provide a lightweight and direct approach to the
recovery and preservation of architectural semantics.

5 Future Work
Future work consists of building the tools for process au-
tomation, application of the process to the large software sys-
tems, and refinement of the process based on the experiences
and integrations with different development processes.

REFERENCES

[1] F. Bachmann, L. Bass, G. Chastek, P. Donohoe, and
F. Peruzzi. The Architecture Based Design Method.
CMU/SEI-2000-TR-001.

[2] B. Boehm, and H. In. Identifying Quality-Requirement
Conflicts. IEEE Software, Vol. 13, No. 2, (March 1996).

[3] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as
a Case Study: Its Extracted Software Architecture. ICSE
’99: International Conference on Software Engineering,
Los Angeles,California, May 1999.

[4] A. Cockburn. Responsibility-based Modeling.
http://members.aol.com/humansandt/techniques/
responsibility.htm.

[5] M. Fowler. The New Methodology.
http://www.martinfowler.com/articles/
newMethodology.html.

[6] M. Fowler. Refactoring: Improving the Design of Exist-
ing Code Addison-Wesley Pub Co, ISBN: 0201485672,
1999.

[7] R. Kazman, M. Klein, and P. Clements. ATAM: Method
for Architecture Evaluation. CMU/SEI-2000-TR-004.

[8] M. H. Klein, R. Kazman, L. Bass, J. Carriere, M. Bar-
bacci, and H. Lipson. Attribute-Based Architecture
Styles. Proceedings of the First Working IFIP Confer-
ence on Software Architecture (WICSA1), San Antonio,
TX, 225-243, (February 1999).

[9] P. Kruchten. The 4+1 View Model of Architecture.
http://www.rational.com/products/whitepapers/350.jsp.

[10] PBS: The Portable Bookshelf.
http://swag.uwaterloo.ca/pbs/.

[11] Principles: The Agile Alliance
http://www.agilealliance.org/principles.html.

2


