
Teaching Software Engineering to a Mixed Audience

Michael Godfrey

Cornell University

January 8, 1999

Abstract

This paper describes some observations derived from teaching a course in software engi-

neering to a mixed audience of undergraduates and professional Master's degree students at

Cornell University. We describe our initial philosophical goals in teaching the course, some

of the problems we encountered, some of the unexpected results, and what we intend to do

di�erently next time.

1 Introduction

The software engineering course at Cornell, CS501, is intended to be taken by advanced under-
graduates and professional Master's degree students (i.e., M.Eng. students). While this course
is not required by any CS program, it is commonly taken both by undergraduates who wish to
improve their understanding of the area, as well as by newly-arrived M.Eng. students who wish to
�ll out their knowledge of software development. Additionally, we have found that undergraduate,
M.Eng., and Ph.D. students from other disciplines (such as electrical engineering and physics)
take CS501 as a way of becoming better acquainted with computer science in general.

1.1 Course Background

In previous years, the course (and its accompanying projects) has emphasized practical topics such
as the e�ective use of various programming tools and techniques. For example, several lectures
were spent on object-oriented programming and e�cient use of the C++ programming language,
students were taught about graphical programming and scripting languages using the TCL/TK
toolkit, and students were taught about the practicality of \smaller" professional programming
tools such as purify and quantify. This wide-ranging theme was also supported by the structure
of the course projects: instead of an incremental term-long project done within a single group,
the students attacked a series of shorter, independent projects each done in a di�erent group and
concentrating on di�erent aspects of software development. The students were then allowed to
express their creativity on a relatively unconstrained term project that spanned the second half
of the course.

This wide-ranging and applied approach was popular with the students, who felt they came
away from the course with an extremely useful kit of knowledge and experience. They had learned
to use some real languages and tools, and had learned how to use them e�ectively and e�ciently.
Nevertheless, while this course structure was undeniably useful and popular, we decided to move
away from its emphasis on languages and tools. To this end, our main goal so far has been to re-
orient the lecture material toward a broader understanding of software development, its inherent

1



and accidental di�culties, and how and why software engineering as practised often di�ers sharply
from both software engineering theory and the practise of traditional engineering disciplines.

We have maintained a signi�cant level of technical detail within the course; we have moved the
teaching of much of the detail into recitation sections conducted by TAs and into course handouts,
and the assignments continue to emphasize various practical problems of software development.
Additionally, some of these topics still form an essential part of the course curriculum. For
example, part of the mandate of CS501 is to teach object-oriented programming in C++; while
most recent undergraduates already have reasonable facility with object-oriented programming,
manyM.Eng. students coming in from industry do not. Our compromise has been to teach object-
oriented programming at a fairly advanced level while at the same time incorporating discussion
of higher-level issues such as design patterns and the nature of inheritance.

1.2 Background of the Students

A signi�cant concern in developing the material for this course was that the background of the
students varied greatly. Many of the students were Cornell undergraduates who were, in general,
very bright but often relatively inexperienced and immature as programmers. The M.Eng. stu-
dents, on the other hand, were more varied. Some had signi�cant industrial experience, while
others had come directly from undergraduate studies at Cornell or another university. We were
surprised to discover that, for example,

� students who considered themselves to be \experienced" programmers often had only a vague
idea of what an interface is or why it's important;

� students who had come directly from undergraduate studies had rarely worked in a group
of more than two people; and

� students were generally unaware of the relative trade-o�s of various languages and tools that
they claimed to be familiar with.

For these reasons, the initial lectures and assignments concentrated on giving an overview of topics
that we considered fundamental, such as modularity, object-oriented programming, working in
groups, and code inspections. We tried to \level the playing �eld" as much as possible early on so
that we could give the students more freedom in the course project in the second half of the term.

We found that the students' expectations of the course also varied greatly. M.Eng. students
who had worked in industry tended to be more mature and patient than the other students. They
were more likely to be interested in higher-level issues, to seek the \why" behind the \what", and
to be able contribute real insight into class discussions. Undergraduates and M.Eng. students who
had come directly from undergraduate programs were often much narrower in their experience and
also less patient. They tended to be bright and eager, and many of them had software development
experience as summer interns and co-ops at companies such as Microsoft and Intel. However, we
found that they were often much less interested in philosophical issues; they wanted to know about
\hot" techniques and tools that would be of immediate use to them, such as e�ective programming
using Java or Microsoft's COM platform. The real challenge of teaching this course was to engage
both groups of students.

2



2 The Course Assignments and Project

2.1 The Assignments

The students were required to complete several medium-sized assignments followed by one large
project. The assignments were tightly structured and concentrated on particular software de-
velopment topics, such as code walkthroughs, object-oriented programming and design patterns,
re-engineering old code, and user interface design. The �nal project was more free form: students
has to conceive, design, and implement an original software system with a graphical user interface.
In our �rst o�ering of the course, the students were asked to create an original game; in our second
o�ering, they were asked to create a software engineering tool of their own design.

Although it is common for software engineering courses to use a single, term-long project, we
feel that this combination of medium-sized, structured assignments followed by a more open-ended
�nal project worked well for us. The smaller assignments helped to ensure that core skills were
developed early on; since the backgrounds of the students was varied, we wanted to \level the
playing �eld" by the time the �nal project came around. The open-endedness of the �nal project
allowed students to express the creativity that the earlier assignments had sti
ed somewhat. We
found that many of the students were quite enthusiastic about the �nal project. In particular,
three of the software engineering tool projects were exceptional and may yet lead to either research
papers or commercial development.

Of course, the disadvantage of using several smaller assignments is that the �nal project is
necessarily of a lesser scale than in a course that employs a single term-long project. However,
we feel that within a single software engineering course, it is vital to ensure competence in basic
software development skills. Should we o�er a sequel course to CS501, it is likely that we will use
a single term-long project for that course.

2.2 The Course Project

In our two o�erings of CS501, we have used substantially di�erent themes for the �nal project.
The �rst time we taught the course, the students were asked to implement an original game with a
graphical interface. The second time we taught the course, the students were asked to implement
a software engineering tool of their own design.

The use of a game as the course project (as had been done by other instructors in previous
o�erings of the course) was quite popular with the students, especially the undergraduates. We
found that most of the games were quite sophisticated and showed mature understanding of topics
such as object-oriented programming (simulations) and use of networks (multi-player games). We
are satis�ed that using a game as a software engineering course project is reasonable, as long as
the initial proposals are carefully screened and the progress of the projects is tracked.

Despite this success, we decided to experiment with the second o�ering of the course and
ask students to design and implement a software engineering tool as the course project. Several
concrete suggestions were given, based on lecture material and previous assignments, but students
were also encouraged to suggest an original tool. We were extremely pleased with the results;
the overall calibre of projects was very high, and three projects were exceptional. In particular,
some of the better students were very enthused and put a lot of e�ort into their projects. Several
students asked to be allowed to extend their course projects into independent study projects, and
one group is currently considering turning their tool into a commercial product.

We must confess that several students were unhappy with this change, as they had been excited
about the possibility of creating a game. However, even more students commented that they had

3



learned a lot about the nature of software development and tool design. In hindsight, it seems
clear to us that that this change in project themes was for the better; not only did the students
gain experience in designing and building a software system, but they also had to explore seriously
an area of software engineering itself in designing their tool.

2.3 Working in Randomly-Chosen Groups

For our �rst o�ering of the course, the assignments and the course project were done in randomly-
chosen groups of four that were changed with each new task. This gave students a wide variety of
experiences in working within groups. We must confess that this approach was generally unpopular
with the students. (One student complained that it was unfair because, \In industry, you'll always
be able to choose who you want to work with.") However, we feel that this \variety of experience"
is extremely important for future software developers. After the course was �nished, one M.Eng.
student commented that while he had not enjoyed working in random groups, he considered it to
be \good medicine" and was grateful for the experience.

For the second o�ering of the course, we relaxed our approach somewhat: the initial assign-
ments were still done in randomly-chosen groups, but the students were permitted to pick their
own partners for the �nal project. Since the project is worth a signi�cant portion of their �nal
grade, we decided that it was reasonable to allow the students the freedom to choose who their
partners would be. We feel this blended approach is a reasonable compromise and that it worked
well. Again, several students commented after the class was over that there were glad for the
experience of randomly-chosen groups, even if it was unpleasant at times.

3 Course Philosophy

In addition to covering the traditional areas of software engineering | requirements, design,
testing, etc.|we have tried to provide a high-level and philosophical view of software development
that is not commonly found in software engineering textbooks. We now elaborate on some of the
themes we explored.

3.1 History is Important

One of the major themes of the course was the saying of Santayana, \Those who cannot remember
the past are condemned to repeat it." Since ours is a fast moving �eld, we feel it is important to
give students an understanding of how and why techniques, tools, and notations have evolved as
they have. For example, we discussed the evolution of programming languages in terms of both
programming abstractions and politics. Too often, we have found that students believe in a kind
of social Darwinism with respect to software engineering (e.g., if it's not written in C, it can't be
real; interfaces were made to be broken). Not surprisingly, we found that the M.Eng. students
who had worked full-time in industry were the most receptive to and interested in these topics;
those without industrial experience were less patient and less willing to entertain the idea that
history is important.

3.2 The Technological Peter Principle

The Technological Peter Principle (the phrase is a facetious creation of the author) states that
any good technology is used up to the level of its natural incompetence. For example, no matter
how fast and smart our computer networks become, they are never fast or smart enough because

4



we also come up with new resource-intensive applications for them. A consequence of this is that
since performance is always important, we are often tempted to ignore issues of reliability, security,
portability, and sacri�ce general good engineering principles in the name of e�ciency.

A related lecture topic concerned the appropriate use of scripting or \little languages" such as
perl and TCL/TK. We discussed a white paper by Dr. John Ousterhout on the use of scripting
languages, strongly versus weakly type languages, and the nature of inheritance. This topic stirred
particular interest within the class. While many students had used such languages before, we found
that few had seriously considered the some of issues raised in the paper and lecture, such as the
nature of software \glue" and the problem of maintaining non-trivial applications written in these
languages. Once again, we found that many students seemed to believe simply that \newer is
better" and \cool is king".

3.3 Professional Responsibility

We held informal in-class discussions of the responsibilities and professionalism of software en-
gineers. For example, one of the materials used was the paper based on Prof. Nancy Leveson's
keynote address to ICSE-94, \High-Pressure Steam Engines and Computer Software"; in this pa-
per Prof. Leveson argues, by historical analogy, that we often have paid insu�cient attention to
the very real and vital problems of software reliability in safety-critical systems. The response
from the class was surprisingly strong. Some students seemed o�ended by these discussions. One
student said that if issues such educational standards of software engineers were truly important,
they would be probably required by law. However, after the course was over several other students
commented that they had found these lectures to be highlights of the course. They were surprised
that no one had ever asked such questions in their undergraduate career.

3.4 Tightening the Reigns vs. Chomping at the Bit

We have found, not surprisingly, that most students who have come straight from undergraduate
degrees did not like the constraints that disciplined software development usually entails. Some
were even surprised to hear that many companies follow strict development processes. M.Eng.
students who had some industrial experience were less shocked, but often did not understand just
why structured activity is so important. We argued that structure in software development is
useful for several reasons: it provides stability and traceability over time; it gives a handle on
the scale and complexity of large, evolving systems; and it entails repeatable results, especially
with regard to reliability. However, the message we presented was not that of \salvation through
structure"; there is no magical crank which when turned will produce interesting, useful, and
pro�table software systems. Many students were intrigued by the idea of there being a trade-o�
between creativity and structure.

4 Next Time ...

We have now taught CS501 twice. Based on our experiences (and 20/20 hindsight) we plan some
changes for the next time we give this course.

4.1 Show Them the Future

It has often been commented that in software engineering practise signi�cantly lags theory. Of
course, we agree that this is a fair comment, but we also seek to address this issue by presenting

5



some of the larger and more interesting problems of software development, and how research
systems are trying to address them. For example, the various problems of software con�guration
management (SCM) have been known for a long time. Although sophisticated commercial SCM
tools exist, many practitioners use simple and inexpensive tools such as RCS or MS-SourceSafe,
if they use any approach at all. We intend to describe the industrial state-of-the-art to students
and also describe how research systems are attacking the \next generation" of problems.

4.2 Lightweight Formalism

While software engineering courses at some universities emphasize the formal development of
software, we have not done so. We consider that the key aspect of building large software systems is
reliable and enforceable abstraction rather than formality per se. However, logic and mathematics
are, of course, key to good abstraction. If we wish our students to create software systems that
are \essential" then we must get them to think in these abstract terms too. Consequently, a short
section on formal speci�cation will be introduced into the course.

4.3 Presentation Skills

During the �nal project demos, it became obvious to us that many of the students did not posses
�nely-tuned presentation skills. While this is perhaps not terribly surprising, next year we will
require students to give more formal presentations of their work, including web page mock-ups
and in-class talks.

5 Conclusions

In summary, we have several observations based on our experiences in teaching a software engi-
neering course to a mixed audience of undergraduates and professional Master's degree students:

� Students who have never worked in industry full time need convincing that software devel-
opment is worth doing carefully. While this remark might seem obvious, we feel it bears
explicit mention.

� Students with real industrial experience are likely to appreciate high-level discussions of
topics with which they already have some experience.

� Using a series of shorter constrained assignments followed by a more unconstrained class
project is a good way to \level the playing �eld" when student experience and ability varies.

� Working in randomly-chosen groups is a valuable experience; however, we feel that it is best
not to use this approach with the �nal project.

� Most students appreciate hearing \views from the mountain", even if they don't agree with
them. Several students remarked that the found class discussions on philosophical issues
challenging and engaging.

6


