
Copyright 2002 IEEE. Published in the Proceedings of IWPC 2002, IEEE Computer Society Press, Los Alamitos, CA, ISBN 0-7695-1495-2, pp.
271-278. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box
1331 / Piscataway, NJ 08855-1331, USA.

1092-8138/02 $17.00 © 2002 IEEE 271

The Role of Concepts in Program Comprehension

Václav Rajlich
Department of Computer Science

Wayne State University
Detroit, MI, USA

rajlich@cs.wayne.edu

Norman Wilde
Department of Computer Science

University of West Florida
Pensacola, FL 32514, USA

nwilde@uwf.edu

Abstract

 The paper presents an overview of the role of
concepts in program comprehension. It discusses
concept location, in which the implementation of a
specific concept is located in the code. This process is
very common and precedes a large proportion of code
changes. The paper also discusses the process of
learning about the domain from the code, which is a
prerequisite of code reengineering. The paper notes the
similarities and overlaps between program
comprehension and human learning.

1. Introduction

 Program comprehension is an essential part of
software evolution and software maintenance: software
that is not comprehended cannot be changed. The
fields of software documentation, visualization,
program design, and so forth, are driven by the need
for program comprehension. Program comprehension
also provides motivation for program analysis,
refactoring, reengineering, and other processes.
 Because of its importance, program comprehension
has been studied intensely, although many problems
are still unresolved. Among the earliest results are the
two classic theories of program comprehension, called
top-down and bottom-up theories. The top-down
theory explains program comprehension in the
following way [5]:

The programmer, when trying to comprehend a
program, makes certain hypotheses and then
confirms or rejects them based on evidence, the so-
called beacon, found in the code. The confirmed
hypotheses are retained, becoming part of the

program’s comprehension, while rejected
hypotheses are discarded.

 The bottom-up theory of program comprehension
[17] is based on chunking. Chunks are parts of code
that the programmer recognizes. A chunk has a specific
meaning and often a name. Large chunks contain
smaller chunks nested within them. The programmer
pieces together his understanding of the program by
combining chunks into increasingly large chunks. Both
top-down and bottom-up program comprehension
theories are complementary and have been combined
into unified models [20].
 In this paper, we want to present a different view of
program comprehension, one that does not rely on the
top-down vs. bottom-up dichotomy, but one that is
based on the role of concepts. As programs have
become larger, it has become ever less feasible to
achieve complete comprehension. Instead, experienced
programmers tend to use an as-needed strategy in
which they attempt to understand only how certain
specific concepts are reflected in the code [14]. They
thus seek the minimum essential understanding for the
particular software task at hand. Concepts play an
important role in that, as we illustrate by several case
studies summarized in the paper. It should be noted
that concepts are also fundamental building blocks of
human learning [21] and hence from our perspective,
the disciplines of program comprehension and human
learning have intriguing similarities and overlaps.
 The role of concepts in software comprehension is
described in Section 2. We illustrate the role of
concepts by describing the process of concept location
in Section 3 and related case studies in Section 4.
Section 5 explores the problem of learning about the
domain from the code and section 6 contains a related
case study. Section 7 discusses some other approaches

272

to the problem and Section 8 contains a summary and
conclusions.

2. Concepts and their role

 In most software engineering processes, complete
comprehension of the whole program is unnecessary
and often is impossible [16]. Change requests are often
formulated in terms of domain concepts, for example
“Add credit card payment to the point-of-sale system”.
The important task is then to understand where and
how the relevant concepts are implemented in the code.
Concept location is the starting point for the desired
program change.
 The concept location process assumes that the
programmer understands the concepts of the program
domain, but does not know where in the code they are
located. For example, if we want to change an external
viewer in a web browser, we have to find the location
where the external viewers are implemented. For that
we have to understand the concept of external viewer
and how external viewers are used in a browser.
 We should be aware that several simplified
definitions of what is a concept appear in the literature.
One is the popular idea that concepts are equivalent to
objects in an object-oriented program. While it is true
that in a well-structured object oriented program each
class represents a concept (external viewer, credit card,
and so on), the opposite is not true. There are many
concepts of the program domain that are too trivial to
have a class of their own. For example, the concept
“payment” may be implemented as a single integer
within class “sale” rather than having its own class.
 Also, many concepts are spread across several
classes. For example the “look-and-feel” of the
application's user interface is implemented in several
classes. Similarly, programmers increasingly use
design patterns that typically involve collaborations of
several related classes to implement a concept [9]. To
locate such distributed concepts requires locating and
marking all classes that participate. If the concept is
going to change, all classes in this group may also
change.
 Another simplified notion of concept originates from
the work of Birkhoff [3] and is very popular [19].
According to this definition, there is a fixed set of
attributes and a concept is a specific subset of these
attributes. The subsets constitute a lattice and therefore
concepts also constitute a lattice. This notion again
does not cover the full range of concepts encountered

by the programmer, although in certain cases it can be
very useful [19].
 We should be aware that the notion of concept is
often an involved one, see the discussion in [27]. In
[21], p.36, a concept is defined as “perceived regularity
in events or objects, or records of events or objects,
designated by a label”.
 In our work, we use the following working
definition:

Concepts are units of human knowledge that can
be processed by the human mind (short-term
memory) in one instance.

Thus we would include in our definition both domain
concepts that would be familiar to an end user ("credit
card payment") as well as related high level design
concepts ("iterator pattern used in the list of credit card
holders"), and important error conditions that a user
may be only dimly aware of ("network error while
validating credit card").
 Note that the set of concepts for a particular program
is not fixed. The specification may use one set,
additional concepts may be added in design, and some
detailed concepts such as the error conditions may not
emerge until programming. As well, one of the
interesting aspects of software maintenance is the way
new concepts can emerge as software is used in
unexpected ways. Finally the lexicon used to describe
concepts may vary as users, designers, programmers
and maintainers use different words to describe
essentially the same or similar concepts.
 Concepts are an important part of human learning
[21]. According to the constructivist theory of human
learning [21], [22], humans actively construct their
knowledge. They always have pre-existing knowledge
that they extend based on new facts. Assimilation is a
process where the new facts are incorporated without
changing the pre-existing knowledge. Accommodation
fits in new facts but requires reorganization of the pre-
existing knowledge.
 This theory is directly applicable to program
comprehension. The programmers always have some
pre-existing knowledge; otherwise the process of
comprehension would not be possible. They assimilate
new facts that easily fit into their pre-existing
knowledge. When faced with facts that do not fit, they
have to accommodate them. Programming knowledge
has many components, but one of the most important
ones is the domain concepts and their implementation
in the code. The gaps in that knowledge are filled
during program comprehension.

273

3. Concept location

 Frequently in program comprehension the
programmer understands domain concepts, but not the
code. The knowledge of domain concepts is based on
program use and therefore it is easier to acquire than
knowledge of the code. For example when using a
word processor, the user learns about cut-and-paste,
fonts, and other concepts of the domain, but knows
nothing about the implementation of these concepts in
the program. Another source of knowledge of domain
concepts is the user manual.
 This original knowledge is the basis for further
learning about concept implementation. All domain
concepts should map onto one or more fragments of
the code. The process of concept location is the process
that finds this code.
 Concept location is needed whenever a change is to
be made. Change requests are most often formulated in
terms of domain concepts. An example is “There is an
error when trying to paste a text consisting only of
capital letters, please correct.” In order to make the
required change, the user must find in the code the
locations where concepts “paste” and “capital letters”
are located - this is the start of the change.
 Concept location has traditionally been an intuitive
process greatly facilitated by the experience of the
programmer. For example, most Software Engineering
Masters students at the University of West Florida do a
maintenance project, and we have observed how
experienced students may locate the code to be
changed in a few minutes, while others thrash for hours
and do not seem to know how to begin. The
experienced students may have some difficulty
explaining exactly how they do what they do, since the
answer to them is so obvious.
 When intuition and experience fail to provide an
immediate answer, programmers must become more
systematic to locate the needed concepts. The most
widely used technique is based on string pattern
matching and uses the similarity of program identifiers
to concept names [2]. So, for example, when searching
for the location of cut-and-paste, the programmer may
want to search for identifiers “cut”, “cutPaste”, “cut2”,
“xCut”, “cutSelected”, “cutText”, and so on. When the
appropriate identifier is found, the programmer studies
the surrounding code to decide whether this is truly the
location that implements the concept, or whether the
similarity of names is just a coincidental

correspondence. Also, the full extent of the concept's
location must be established. The concept is
implemented not only in the place where the identifier
was found, but also in previous and following
statements, the variables that are used in these
statements, and so on.
 A well-known example of a string pattern matching
utility is “grep” available on most Unix systems;
therefore this technique is sometimes called the “grep
technique”. In spite of its wide acceptance, it has
serious deficiencies. It is based on the correspondence
between the programmer’s name for the concept and an
identifier in the code. Both homonyms and synonyms
create problems. The technique often fails, particularly
when the concepts are hidden more implicitly in the
code, or when the programmer is unable to guess the
program identifiers.
 Thus both the intuitive approach and the grep
technique depend heavily on hints from the program's
original developers. They must have used naming
conventions that clearly encode domain concepts. They
must have structured the program around these
concepts and identified them in the code using
meaningful and consistent names. As previously
mentioned, a key problem is that, especially after many
cycles of maintenance by diverse programmers, the
vocabulary used to describe the software may no
longer be the same as at its creation. Thus intuition and
the grep technique are likely to become less useful on
older and heavily maintained code.
 These difficulties have motivated a search for
alternative methods of locating concepts. One such
approach is the dynamic search method, also called
software reconnaissance [24]. It is based on the
following idea:

Some programming concepts are selectable,
because their execution depends on a specific input
sequence. For example cut-and-paste is selectable
because the user of the word processor can select
whether to use it or not. Selectable program
concepts are called features. The code that
implements features can often be found by
executing the program twice: once with the feature
and once without, and then marking the parts of
the program that were executed the first time but
not the second time. These parts are likely to be in
or near code that implements the feature.

 In order to find which parts were executed in which
test cases, additional instrumentation statements that
indicate which parts (functions, branches, or

274

statements) were executed must be added to the
program. Once the code has been instrumented, test
cases have been run, and the appropriate code of the
feature has been marked, the programmer again reads
the relevant code in order to understand the program
plans related to the feature. Deprez and Lakhotia have
formalized and extended this method to show how
adequate test data for a feature can be identified from a
grammar of the program inputs [8].
 Another technique of concept location is to search
through the static code [6]. The search follows control
flow and data flow dependencies among the program
components. A typical scenario of the search goes top-
down through control flow dependencies and is
described in the following way:

The functionality of the whole program is
summarized in the top-most function main() or
top class of the program. However this top class
does not (and cannot) do everything, it delegates
parts of its functionality to other classes. Hence if
the top class does not implement the sought
concept, it must be implemented by one of the
classes or functions called by it. Since these called
classes or functions are specialized, it is usually
easy to decide which one does and which one does
not contain the sought concept. Moving down
through the call graph towards more and more
specialized functions or classes, the programmer
ultimately finds the classes or functions that
participate in the concept.
If the origin or destination of data is sought, then
the programmer follows the data flows rather than
control flows.

 This static search is used when the results of the
previous techniques either fail or have to be sharpened.
When employing this technique, not only the functions
and classes of the concept implementation must be
understood, but also the functions or classes on the
search path. However the understanding of these
additional components does not have to be as accurate
as the understanding of the components that participate
in the concept implementation.

4. Case studies of concept location

 We have performed a number of case studies of
concept location to try to clarify the relationships
between concepts and code comprehension. One of the
more systematic studies applied the static search
technique to the NCSA Mosaic 2.5 web browser [6].

The change request was to extend Mosaic to be able to
handle a new type of audio files. The task is the
following: Locate in the code where the type of the
incoming file and its mapping to an external viewer are
determined.

The task was decomposed into three subtasks. The
first subtask was to find the function that opens a new
window. The new window has the same browsing
functionality as the old one; therefore the mappings
must be copied immediately after the opening. We
adopted the top-down strategy and started from the
function main() and after several steps we located
function mo_open_window() that opens a new
window.

The second subtask was to find where and how the
mappings are copied. It must be done sometime after
the window opens and before any document is loaded.
We continued the top-down strategy, starting in
mo_open_window() and after several steps we found
functions HTFormatInit() and HTFileInit() that copy
the mappings.

Functions HTFormatInit() and HTFileInit() use
several global variables. We needed to know where the
values of these variables come from and this was the
third subtask. Our strategy was to follow backward
data flow to the source of these values. Ultimately we
reached the variable HOME that is the location of the
defaults; this is the location where the changes should
be made.

The location process of this case study resulted in a
partial comprehension of the system. Of the 984
functions in Mosaic, we visited only 22, about 2% of
the code and that provided sufficient comprehension to
be able to locate the concept and start the required
change.

Other case studies used the dynamic search
(software reconnaissance) technique described in the
previous section [25], [10]. One such study was
intended to provide an analysis of the domain concepts
that appear in the program's user documentation, to
clarify how user-level domain concepts map onto code.

The system studied was the analysis part of the
ATAC test coverage monitor developed by Bellcore
(now Telcordia) [11]. The program was approximately
10 K lines of code (raw line count) distributed into 24
C code files and 4 header files. The user documentation
consisted of an extensive Unix-style "man" page, from
which 24 different testable concepts were identified. A
total of 77 test cases were written and used to mark
code for each concept.

275

One interesting result shows how concepts are
commonly delocalized in code [18]. Table 1 shows that
19 of the 24 concepts had code in two or more source
files, indicating that the maintainer trying to understand
the concept must integrate information from different
and distant code fragments.

On the other hand, the study also showed how
regularities in the design, and especially in the naming
of functions and data, may greatly facilitate concept
location. For example, ATAC is a test coverage tool
for C programs, and so provides its users with
information about how well a test set covers the
functions, basic blocks, decisions and data flows (p-
uses and c-uses 1). Thus we have these five domain
concepts (function, block , decision, p-use, c-use) in
ATAC.

Table 1

Delocalization of Feature Code

Number of Files
Containing

Marked Code

Number
of

Concepts
0 3
1 2
2 8
3 5
4 2
5 0
6 0
7 0
8 2
9 2

Total 24

While each of these five concepts has code in
several places in the program, ATAC had been
designed so that there is one ATAC source file that
concentrates on displaying information about each
concept. The file names give important clues for
concept localization. The file that contains most of the
function concept was named fdisp.c, while the one
with most of the block concept was bdisp.c and the
one with most of the c-use concept was cdisp.c, and

1 p-uses and c-uses are different kinds of data flows
used in data flow testing [11]. A p-use is a use of a
variable in a predicate, such as an if statement. A c-use
is a use of a variable in a computation, such as an
assignment statement.

so on. The naming convention is obviously based on
the first letter of the concept. Similar regularities were
found in the names of functions within each of these
files [25].

With this kind of parallel name structure, a
maintainer can quickly learn how and where these
different concepts are located. When one of the five
concepts is understood, the others fall quickly into
place. Presumably it is regularities such as these in well
designed code that allow experienced software
engineers to be successful with the intuitive approach
described in section 3. Obviously however, such
methods break down if the regularity is broken by a
loosely coordinated design team or by ill-informed
maintenance.

5. Learning about the domain from

programs

 In many software engineering situations, the
programmer’s knowledge of the domain is incomplete
and the programmer may have to learn more about the
domain from the program.
 This process is rarer than the process of concept
location, but it is still important, especially during
reengineering. It is well known that some legacy
programs contain business rules and other domain
information that may not be available anywhere else.
There may be algorithms or formulas that solve
problems successfully, but these algorithms or
formulas are not recorded anywhere other than in the
code.
 For example Kozaczynski and Wilde mention a
legacy system used by a major US insurance company
[15]. The rules for calculating insurance premiums are
subject to differing state laws and many slight
variations had accumulated over the years. Most of
these variations are undocumented and can only be
discovered through analysis of the system code.
 When programmers are asked to reengineer or even
to re-implement such a program from scratch, they still
need all the knowledge that is contained in the old
program. In order to recover that knowledge, the
programmers have to rebuild the hierarchy of domain
concepts and the details of their implementation based
on the old program. One methodology for this is
described in [26].
 The methodology starts with a study of user manuals
or similar documents and based on them, creates a first
approximate version of the domain model. After that,

276

the concepts of the domain are located in the code one-
by-one and their details are studied. From that a more
accurate comprehension of the domain emerges. That
comprehension is then used in reengineering.

6. Case study of learning about the

domain

 An example of learning about the domain from the
code is a case study of the reengineering of the
CONVERT program [26]. CONVERT is part of the
FASTGEN geometric modeling system that models
solid objects using primitives like triangles, spheres,
cylinders, donuts, boxes, wedges, and rods. The United
States Air Force uses it to model the impact of
explosions and projectiles on targets such as vehicles,
aircraft, etc. CONVERT transforms models into
triangles, as required by other FASTGEN programs
[13]. It is written in Fortran77 and consists of 2335
lines.
 CONVERT has a long maintenance history, going
back to the original program of 1978. Since that time,
it has been ported to several hardware platforms,
including CRAY Y-MP 8/2128 and Digital Equipment
Corporation VAX. Lately, CONVERT was ported to
personal computers.
 Reengineering of the code has become desirable
because after such prolonged maintenance, the
structure of CONVERT is obsolete and very hard to
maintain. It has poor modularity, with large, non-
cohesive subroutines. Most of the data is held in large
COMMON blocks, each referenced by many
subroutines. The control flow is tangled, with large
unstructured loops created by backward-branching
GOTO statements. There are obsolete program plans
that were necessary in early operating systems. For
example there is batching of input/output into blocks of
200 records for greater efficiency, the use of scratch
files to avoid overflowing of fixed size arrays, packing
of multiple control flags into a single integer to save
memory, and so on. Nevertheless the program contains
valuable knowledge of the domain that still has a great
value for the user. This knowledge must be preserved
during reengineering.
 As the first step, we reviewed the CONVERT user's
manual [13] and created a tentative domain class
model. We also extracted an initial list of 47
CONVERT features. These two documents represent
initial understanding of the program domain.

 The next step was location of the features in the
code. For that we used dynamic search (software
reconnaissance). Two test cases were identified for
each feature, one "with" the feature and a similar test
case "without" the feature.
 A total of 418 code parts (blocks or function entries)
were instrumented. The initial tests covered 63.4% of
the code, a fairly typical number for a functional test
set. Of that, 13.4% was "common" code, executed on
every invocation.
 The study revealed that most of the common code of
CONVERT reads 80 column records for a geometric
model. The remaining common code performs
initializations, such as opening files, setting
parameters, etc.
 After analyzing the common code, we located and
learned details of the individual features, one at a time.
As features were understood, they were assigned to
classes in the domain class model, adjusting the model
as necessary to accommodate our increased
understanding of the application. For example, we
discovered some additional features that either were
not mentioned in the user’s manual or were missed
during the reading, such as error checks. These features
were added to the list and we added the corresponding
test cases. Final products of this process included a
UML class diagram, the test set, and descriptions of the
features. These documents are a starting point for
program reengineering.

7. Other Work

 There are two other threads of research and Software
Engineering practice that should be mentioned in the
context of concept location.
 The first of these is change impact analysis. Impact
analysis is a long established field in software
maintenance, which attempts to identify the impacts or
"ripple effects" that a change in one part of a program
may have on another. It is not possible here to give a
complete survey of this field. The reader is referred to
the excellent set of papers and the bibliography in [4].
 While most impact analysis has traditionally focused
on code, some approaches take into account the whole
range of documents that form part of a software
system, including specifications and design. In this
case, impact analysis blends into the concept of
traceability, the ability to trace specification to design
and design to code. If an impact analysis tool provides

277

traceability information then it may be possible to trace
specification concepts to the relevant code.
 While traceability is undoubtedly useful, we should
note two limitations from the point of view of concept
location. The first is that maintaining traceability
information over a system's life cycle usually requires
considerable manual work, and thus is often slighted
under the time pressures often associated with software
development and maintenance. Second, the traceability
information will almost certainly be expressed using
the set of concepts perceived at specification time. As
noted in section 2, the concept set and the lexicon used
to describe it often change substantially over the life of
a system.
 The second thread related to concept location is that
of fault location. Researchers working on improved
debugging techniques have evolved techniques for
locating software faults by comparing execution slices
of different test cases. These techniques are often quite
similar to the dynamic search method described in
section 3. Perhaps a fault could be considered to be an
unwanted concept?
 Again it is not possible to completely survey the
fault location literature here. The earliest paper on this
topic seems to have been by Collofello and Cousin,
who instrumented decision-to-decision paths in order
to locate faults seeded into Pascal programs [7]. Other
more recent work includes [1] and [12].
 The relationship between human learning and
program comprehension was noted in [23].

8. Conclusions

 In this paper, we explored domain concepts and their
role in program comprehension. There are several open
problems in this research.
 The location techniques mentioned in this paper
need additional refinement. The static technique is
based on program analysis. There are many open
problems in static program analysis, starting with
algorithms of pointer aliasing, discovery of hidden
dependencies [28], and so on. The software
reconnaissance method relies on instrumentation and
recompilation of the program, followed by execution of
the instrumented version with feature-tagged data.
These steps may be awkward under the time pressures
of a commercial production environment; smoother
tool support would be very useful.
 Also of interest would be an integrated software tool
that would combine capabilities of several techniques

of concept location: pattern matching, static search,
and dynamic search, and allow the programmer to use
the most appropriate one for the specific situation.
 Another interesting set of problems arises from the
similarity between process of constructivist human
learning and program comprehension. In the theory of
human learning, conceptual maps are used to describe
human knowledge [21]. We speculate that these
approaches can be applied to program comprehension
and may offer additional interesting insights and
techniques.
 An attractive aspect of this field is the fact that
research on the identification and location of domain
concepts in software promises both improvements in
programming productivity, and at the same time it
provides significant research challenges.

References

[1] Agrawal, H., Horgan, J., London, S., Wong, W.,
"Fault Localization using Execution Slices and
Dataflow Tests", Proc. Sixth International Symposium
on Software Reliability Engineering, IEEE Computer
Society, Oct. 1995, pp. 143 - 151

[2] Biggerstaff, T.J., B.G. Mitbander, D.E. Webster,
"Program Understanding and the Concept Assignment
Problem", Comunications of ACM, May,1994, 72-78

[3] G. Birkhoff, Lattice Theory, American
Mathematical Society, Providence, RI, 1940

[4] Bohner, S and Arnold, R, Software Change Impact
Analysis, IEEE Computer Society, Los Alamitos, CA.,
1996.

[5] Brooks, R., "Towards a Theory of the Cognitive
Processes in Computer Programming", Int. J. Man-
Machine Studies, Vol.9, 1977, pp.737-751

[6] Chen, K., V. Rajlich, "Case Study of Feature
Location Using Dependence Graph", Proc.
International Workshop on Program Comprehension,
IEEE Computer Society Press, 2000, pp. 241-249

 [7] Collofello, J., and Cousin, L., "Towards automatic
software fault location through decision-to-decision
path analysis", Proceedings National Computer
Conference, 1987, pp. 539 - 544.

278

[8] Deprez, J. and Lakhotia, A., "A formalism to
automate mapping from program features to code",
Proceedings 8th International Workshop on Program
Comprehension - IWPC 2000, IEEE Computer Society,
Los Alamitos, CA., June 2000, pp. 69 - 78.

[9] Gamma, E., Helm, R., Johnson, R., Vlissides, J.,
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, 1994.

[10] Gunderson, A., Wilde, N. and Casey, C., Locating
Features in Interbase: A Software Reconnaissance
Case Study at GTE Government Systems, report SERC-
TR-77-F, Software Engineering Research Center,
University of Florida, Gainesville, FL 32611, March,
1995.

[11] Horgan, J., London, S., Lyu, M., "Achieving
Software Quality with Testing Coverage Measures",
IEEE Computer, Vol. 27, No. 9, September 1994, pp.
60-69.

 [12] Jones, J, Harrold, M., Stasko, J., "Visualization
for Fault Localization", Proceedings of the Workshop
on Software Visualization, May 2001,
http://www.cs.brown.edu/research/softvis/Contents.ht
m (URL current January, 2002).

[13] Jones, S.L., Aitken, E D., Convert3.0 User’s
Manual, ASI Systems International, Fort Walton
Beach, FL: March 1994

[14] Koenemann, J., and Robertson, S., "Expert
Problem Solving Strategies for Program
Comprehension," Proceedings of the Conference on
Human Factors in Computing Systems, CHI'91, ACM
Press, pp.125-130, May 1991.

[15] Kozaczynski, W.,and Wilde, N., "On the Re-
Engineering of Transaction Systems", J. Software
Maintenance, Vol. 4, 1992, pp. 143-162.

[16] Lakhotia, A., "Understanding Someone Else's
Code: An Analysis of Experience", J. Systems and
Software, 1993, pp. 269-275

[17] Letovsky, S., "Cognitive Processes in Program
Comprehension", Empirical Studies of Programmers,
Eds. E. Soloway and S.S. Iyengar, 1986, pp.58-79

[18] Letovsky, S. and Soloway, E., "Delocalized Plans
and Program Comprehension", IEEE Software, vol. 3,
No. 3, May 1986, pp. 41 - 49.

[19] Lindig, C., G. Snelting, "Assessing Modular
Structure of Legacy Code Based on Mathematical
Concept Theory", Proceedings of International
Conference on Software Engineering, IEEE Computer
Society Press, 1997, 349-359

[20] von Mayrhauser, A., A. Vans, "From Program
Comprehension to Tool Requirements for an Industrial
Environment", Proc. 2nd Workshop on Program
Comprehension, July,1993, pp.78-86

[21] Novak, J.D., Learning, Creating, and Using
Knowledge, Lawrence Erlbaum Associates, Mahwah,
NJ, 1998

[21] Piaget, J. (1954) The construction of reality in the
child. New York, Basic Books.

[23] Rajlich, V., "Program Comprehension and
Domain Concepts," in T. Twoney, M. OBrien,
J.Donovan, ed., Proc. of the 1st INSERC Conference of
Software Ergonomics, ISBN 0-9541582-1-0, Limerick
Institute of Technology Press, 2001, 65 73.

[24] Wilde, N., M.C. Scully, "Software
Reconnaissance: Mapping Features to Code", J.
Software Maintenance, 1995, 49-62

[25] Wilde, N. and Casey, C., Case Studies in Software
Reconnaissance, report SERC-TR-78-F, Software
Engineering Research Center, University of Florida,
Gainesville, FL 32611, May, 1995.

[26] Wilde, N., Buckellew, M., Rajlich, V., "A
Dynamic Analysis Methodology for Reengineering
Fortran to C++", to be published

[27] Wittgenstein, L., Philosophical Investigations,
Mcmillan Publishing Co., New York, 1953

[28] Yu, Z., Rajlich, V., "Hidden Dependencies in
Program Comprehension and Change Propagation",
Proc. International Workshop on Program
Comprehension, IEEE Computer Society Press, 2001,
293-299

