
Notes on Postmodern Programming

James Noble, Robert Biddle
Computer Science,

Victoria University of Wellington, New Zealand.�
robert,kjx � @mcs.vuw.ac.nz

October 29, 2002

0 Manifesto

The ultimate goal of all computer science is the program. The performance of
programs was once the noblest function of computer science, and computer
science was indispensable to great programs. Today, programming and com-
puter science exist in complacent isolation, and can only be rescued by the
conscious co-operation and collaboration of all programmers.

The universities were unable to produce this unity; and how indeed, should
they have done so, since creativity cannot be taught? Designers, programmers
and engineers must once again come to know and comprehend the composite
character of a program, both as an entity and in terms of its various parts.
Then their work will be filled with that true software spirit which, as “theory of
computing”, it has lost. Universities must return to programming. The worlds
of the formal methods and algorithm analysis, consisting only of logic and
mathematics, must become once again a world in which things are built. If the
young person who rejoices in creative activity now begins his career as in the
older days by learning to program, then the unproductive “scientist” will no
longer be condemned to inadequate science, for their skills will be preserved
for the programming in which they can achieve great things.

Designers, programmers, engineers, we must all return to programming!
There is no essential difference between the computer scientist and the pro-
grammer. The computer scientist is an exalted programmer. By the grace of
Heaven and in rare moments of inspiration which transcend the will, com-
puter science may unconsciously blossom from the labour of the hand, but a
base in programming is essential to every computer scientist. It is there that
the original source of creativity lies.

Let us therefore create a new guild of programmers without the class-dis-
tinctions that raise an arrogant barrier between programmers and computer
scientists! Let us desire, conceive, and create the new program of the future
together. It will combine design, user-interfaces, and programming in a single
form, and will one day rise towards the heavens from the hands of a million
workers as the crystalline symbol of a new and coming faith.

1

1 To Our Reader

These notes have the status of “Letters written to ourselves”: we wrote them
down because, without doing so, we found ourselves making up new argu-
ments over and over again. When reading what we had written, we were al-
ways too satisfied.

For one thing, we felt they suffered from a marked silence as to what post-
moderism actually is [77, 9]. Yet, we will not try to define postmodernism,
first because a complete description of postmodernism in general would be
too large for the paper [62, 44, 64, 73], but secondly (and more importantly)
because an understanding of postmodern programming is precisely what we
are working towards.

Very few programmers tend to see their (sometimes rather general) diffi-
culties as the core of the subject and as a result there is a widely held consensus
as to what programming is really about. If these notes prove to be a source of
recognition or to give you the appreciation that we have simply written down
what you already know about the programmer’s trade, some of our goals will
have been reached.

2

2 On Our Ability To Do Much

We are faced with a basic problem of presentation. What we are really con-
cerned about is the composition of large systems, the text of which may occupy,
say, a significant fraction all the digital storage media in the known world [74].

Our basic problem is simply the success of modern computer science. His-
tory has shown that this truth is very hard to believe. Apparently we are
trained to expect a “software crisis”, and to ascribe to software failures all the
ills of society: the collapse of the dot-com bubble [28, 31], the bankruptcy of
Enron [51], and the millennial end of the world [78].

This corrosive scepticism about the achievements of programming is un-
founded. Few doom-laden prophesies have come to pass: the world did not
end with fireworks over the Sydney harbour bridge, and few modern disasters
are due to software. To consider just two examples: the space shuttle crash was
not caused by software — indeed, Feynman praises the shuttle software prac-
tices as exemplary engineering [24]; and the Dot-Com Boom (like the South
Sea Bubble) was not caused by failure of technology, but the over-enthusiasm
of global stock markets.

In short, one cannot be woken up in the morning, travel to work, listen to
radio or music; watch television; play games; speak or TXT down the ’phone;
read newspapers or books; write conference papers, journal articles, govern-
ment or corporate reports; save or spend money; buy food, cook it, order or
pay for it at restaurants ranging from McDonalds to the Ritz; without every ac-
tivity critically depending upon the results of programming. These programs
are not perfect: but neither are they the complete, expensive failures beloved
of armchair critics, whose behaviour belies their own rhetoric whenever they
fly across the Atlantic in automated aircraft to speak at conferences and then
use Internet banking to check their accounts. The measure of software is our
irritation at its failures, not our surprise that it works at all.

Summary: as quick-witted human beings we have built very large com-
puter systems and we had better learn to live with them and respect their lim-
itations while giving them due credit, rather than to try to ignore them, so that
we will be rewarded by continued success.

3

3 On the Notion of Program

The object of study of computer science is the program — somehow cobbled
together by old-time programmers; measured, metricated, analysed, theorised,
critiqued, tested, compiled, optimised, and often ignored by modern computer
science. We consider that the term “program” is both too big and too little for
postmodern computer science.

“Program” is too big because often we are working on parts of programs:
objects, functions, classes, components. We may have no idea which (if any)
program these parts will end up part of.

“Program” is too small because often we are working on multiple pro-
grams: perhaps the small component is to be part of many large programs;
perhaps there is a framework or library that will be reused many times; per-
haps our program must communicate with other programs, who in their turn
communicate with yet more programs, so the subject of our endeavour is some-
where this interconnected network.

Large or small, the quality to which we refer is perfectly precise. Like bad
art, we know it when we see it. Still, it cannot be named.

A word which we most often use to talk about programs is “component”.

Yet, a component can only be a subpart, not a whole.

Another word which we use to talk about programs is “system”.

A system could be large, or small, but includes the strong connotation of sys-
tematic, systems theory, system thinking, that the system is organised, ratio-
nally subdivided, structured recursively into a tree of modules, modern. The
word “system” is too enclosed.

The word “algorithm” is often claimed as the central concept of computer science [35]

“Algorithm”, however, leaves out large amounts of the discipline of program-
ming: components, patterns, protocols, languages, data structures [76].

The word “software” is reminiscent of undergarments.

The phrase “the software without a name” could capture precisely what we wish
to address. Unfortunately, experience teaches us that this software would soon
have a name: “SWAN”.

Thus, we have retained the word program, but treat it as under erasure, as
meaning whatever program, program subcomponent, or supersystem we hap-
pen to be working on at the time.

4

4 On Pervasive Heterogeneity

Modern computer science dreamed of the personal computer: one machine
usable by one person running one application written in one language. The
personal computer was “the computer you could unplug”.

We have progressed far beyond the modern dream. There is a “Computing
Rainbow” [33] — an interdependent system of global computation with a mul-
titude of machines supporting many languages, applications, and users, with
heterogeneous architectures and differing capacities, costs, prices, and owner-
ship. You cannot unplug computers even if you could want to: why would
you want to avoid reading email from your friends; disconnect the full author-
ity digital engine controllers from the turbofans carrying the airliner; or remove
the cochlea implants correcting your congenital deafness?

Each of these subareas of programming has their own concerns, forces, dif-
ficulties, problems. Computer science is itself fragmented, although some con-
cerns cut across several areas. But this heterogeneity does not operate only
at the abstract level of the field as a whole; rather programs themselves are in-
creasingly heterogeneous. A program may include a PalmPilot client which in-
terfaces directly to an 360-architecture mainframe; Windows XP microcomput-
ers may feed information into a Sun minicomputer; one division of a company
may run Compaq VMS systems while another runs IBM AS/400 or HP7000.
Programs have to federate across diverse systems, without any common lan-
guage, protocol, or necessarily even character set in common.

5

5 On Abstraction

At this stage we find it easy to say something about the role of abstraction,
partly because it permeates the whole subject.

Modern computer science describes the relationships within programs as
“abstractions” — we may say an object in a program is an abstraction of the
real world [8].

Computer scientists and mathematicians are familiar with abstractions: for
example, a stack is an abstraction that might be implemented by an array, a
pointer, and some executable code; the stack is an abstraction because it elides
many of the details of actual implementation [17].

Unfortunately, it doesn’t seem to make much sense to say that a Bovine
object in a program is an “abstraction” of a real cow in a farm in this way: it
doesn’t make sense to say that the object in the program is “implemented” by
a cow in reality, or that the objects in the program are special kinds of cows
which do not eat, excrete, or expire. Alternatively, following Plato, we could
have an abstraction of a cow as the “ideal, immutable, eternal form” of a cow,
perhaps corresponding to a Cow class, but, again, this kind of abstraction is not
a good description of the relationship between the cow object and the real cow
[68].

Postmodern computer science proposes a range of different descriptions of
the relationship between programmatic object and external object. For exam-
ple, that this kind of relationship can be seen as semiotic: that is, the object in
the program can be seen as a sign of the object in the world [55, 4, 3, 2]. Un-
like abstractions, which can be reasoned about using deduction (from causes
to effects), signs are effectively implications, and are modelled using abduction
(reasoning from effects to causes) [21].

Semiosis may also support developments of a theory of debugging (de-
termining bugs from symptoms); of analysis (determining the programs from
requirements); and a metatheory of design (determining patterns, algorithms,
structures from concrete programs) [54].

6

6 On Requirements

Postmodern computer science holds that no requirements can be both com-
plete and consistent: you have to pick one.

Descriptivists, postmodernists choose completeness over consistency. In
analysing a system (for example with Usage-Centered Design [13]) we may
consider multiple users providing multiple requirements, and distinguish be-
tween actors who will finally use the system, customers who pay for it, clients
who commission it, and stakeholders who wish they were involved — all of
whom may be in conflict. Postmodern analysis uses techniques to handle in-
consistency, such as iteration on designs, prioritising, and lying where neces-
sary [61].

In contrast, modernists choose consistency over completeness. To perform
any traditional formal analysis (without resorting immediately to modal log-
ics) a description has to be consistent: before forming such a description, much
information must be elided to ensure this consistency — adopting such a frame
of reference necessarily excludes information that lies outside. Of course, a
consistent definition has the great advantage of automated or manual check-
ing, often the aim of the modernists — but as postmodernists we are willing to
coopt their techniques whenever we feel they are useful.

Computer scientists with a formal bent often claim that design and imple-
mentation are an exercise — in the refinement calculus you can gradually trans-
form a problem statement into a program, maintaining correctness at every
step: problem frames have similar potential. From a postmodern perspective,
however, such a definition is not a problem statement, but rather an abstract
definition of a solution — where refinement simply makes a solution more
concrete. Similarly, Jackson’s problem frames are selected to match particular
solutions, rather than problems per se: one fits problems to frames, rather than
adjusting frames to enclose problems [43].

Corollary of this section: Formal analysis can be used to show the absence of
bugs, but never to show the correctness of the specification. Or, to quote Alan
Perlis: “102. One can’t proceed from the informal to the formal by formal means” [59].

7

7 No Big Picture

A key characteristic of postmodernism is the absence of a “grand narrative”
[64, 50, 62]. Where once the majority of the world would have believed in God
or Marx, where architecture was simply building steel framed rectangular glass
boxes, where music was constrained to the twelve-tone row, where citizens of
a country all spoke the same language and supported the same cricket teams,
we may now contemplate with fear a sea of chaos, perhaps held together by
unenlightened self-interest.

Consider the Internet as we know it: a connection of loosely coupled com-
puter systems, of varying capacities, architectures, ownerships, costs, and sizes.
It connects every conceivable variation of every operating system and every
computer. It speaks many network protocols (HTTP of various versions and
brands; Telnet; POP; IMAP; NETBUI; AFS; SMB; . . .); and through hardware
software gateways, the systems and protocols of what appears to be the Inter-
net are in fact unlimited. It can even reach computers that have been obsolete
and no longer exist: retrocomputing lives through emulation and lives on the
Internet.

Even the user experience of the World Wide Web is extremely diverse: every
web site has its own design, its own interaction style, its own personality, with
no commonality other than the menu bar provided by an individual’s browser,
one of many available, and customisable on a whim.

Ward Cunningham’s Wiki Wiki Web [15, 49] shows that even the historic
success of the World Wide Web left room for improvement: the Wiki design
involves exquisitite light touch, and allows the Wiki to be many things at once,
all of them dynamic, collaborative, and — healthy.

Compare this all with representations of a computational “infosphere” in
popular science fiction — such as The Matrix [71] or Neuromancer [34]. These
are typically modern in character, working in a complex but coherent way, and
presenting a uniform interface: the “Matrix” presents a realistic single graph-
ical presentation common to all users. Ironically, the postmodern Internet is
more real than these fantasies; and there is no one viewpoint on the Internet,
and there may be no commonality between two web sites even if hosted on the
same server and designed by the same people.

Although it clearly developed from the original success of the modern de-
sign of the Arpanet, the success of the Internet now is postmodern in character.
But it is success. And the tolerance of eclectic diversity is a key cause of the suc-
cess of the internet: it has allowed growth and interaction instead of isolation
and alientation.

For postmodern programming, the absence of an overarching grand narra-
tive means eclectic tolerance in programming terms:

� There is equal acceptance of high and low culture: Visual Basic and Haskell
are equally of interest, as there is no reason to applaud the one and dis-
parage the other.

� The past is just another part of the present — programs can call on ele-
ments of modernism, either aesthetics or technology, and combine them
together in equal measure. As ancient computers live through emulation
on the Internet, so ancient programs and languages can live in connection
with programs not yet written.

8

� Programs can exhibit “faults in construction” that would be forbidden by
a modernist approach.

� Programming techniques (such as design patterns) and systems (such as
Aspect/J [45], or even the continuation code sections in literate program-
ming [46]) explitly support program organisation involving communi-
cating diverse elements.

Without a grand narrative, there will not be one common way to program,
or even one common kind of interface between programs. The alternative is
the postmodern multidimensional organisation encompassing many little nar-
ratives.

In practice, narratives may grow and shrink, reflecting the exercise of power
(especially by monopolist organisations) and the development of communities
(especially where cooperation is mutually beneficial).

Moreover, there are many kinds of narrative in programming, and systems
may have a postmodern character in some aspect but modern character in oth-
ers. For example the Microsoft Common Language Runtime [36] is postmod-
ern in that it supports a large number of programming languages — mod-
ern (C), postmodern (Perl), and historical (COBOL), high culture (Haskell) and
low (Visual Basic), with access to low-level features as necessary (a modernist
would consider this a fault). However, it is modern in that it achieves this
by enforcing a common bytecode format — indeed, a particular subset of the
format, and that it deploys the apparatus of power (verifiers, compliance kits,
bytecode type checkers, developer certification, code component certificates)
to enforce the commonality.

9

8 On Modular Components

Modularity, and interchangeable modular components are a key component of
the modernist approach in software, as in architecture, marketing, production,
and elsewhere.

Postmodernism admits modernism as one mode of expression, so modu-
lar or generated components (as with other modern techniques or tools) can
readily be used to postmodern ends.

Consider for example the Sydney Opera House. This building is now sym-
bolic of Sydney and Australia, but was originally sketched on the back of a
napkin by Jørn Utzon. The key feature of the Opera house are the shell-like
roofs above the Opera Theatre and Concert Hall (a design which is postmod-
ern because it has nothing to do with the function of the concert halls below).

The construction of the Opera House is only possible because the distinctive
shells come from a single geometric spherical section. This was not part of
the napkin design — yet according to Utzon, this “solves all the problems of
practical construction by opening up mass production” both for the tiles on
the roof, and the ribs supporting them. Without mass production of modular
components the Opera House could not have been completed.

10

9 No Metaphor

Postmodern programming rejects overarching grand narratives.
As a result, it favours descriptive reasoning rather than prescriptive. Rather

than working top down from a theory towards practice, postmodern program-
ming theories are built up, following practice. Moreover, theory follows prac-
tice on a case-by-case basis — “the world is all that is the case” [77].

Note that here we don’t necessarily mean “theory” in the mathematical
sense of theoretical computer science. Rather, we mean theory in the tradi-
tional speculative sense that serves to help us organise our experiences. For
example, theories of how best to program would include stepwise refinement,
object-orientation, and pattern languages.

Postmodern programming limits the scope of theory (and formalism) to
particular “little narratives” — conditions where that theory is applicable, or is
generated by the practice. This limits the kind of questions that will be asked
of theory, and theory’s position within the discipline as a whole.

Many metaphors have been adopted to describe programming: computer
science (hypotheses, experiments, research); software architecture (plans, build-
ing, implementing); software engineering (design, verify, construct); and we
may see programs as literature (write programs, literate programming); pro-
grams as evolutionary biology (program evolution, cellular automata); programs
as neurobiology (artificial neural networks); programs as mathematics (programs
as theorems, as proofs, as type systems).

Within modern computer science (following modern architecture, or disci-
plinary inadequacy due to the low status of computer science departments in
many universities) there is an intellectual posture that accepts metaphors from
other disciplines uncritically [65], without providing arguments as to why that
metaphor should be applicable [79]. In general, this is the result of the modern
grand narrative: computer science must conform to some theory, where that
theory is carried by metaphor: the program as proof, as bridge, as house, as
city.

Postmodern computer science tends to eschew metaphor — rather, in place
of a metaphor we have a past. This is true on both the large scale (the disci-
pline as a whole) and the small scale (individual programmers and programs).
Postmodernism is often descriptive: recording the state of the world, rather
than presenting some grand theory. Writing programs follows reading pro-
grams, because postmodern programming is extension, recovery, reuse, rather
than creating masterpieces from nothing. Theory follows practice, because we
aim to understand the world as it is, rather than remake it from scratch with a
genesis device [66].

Our view is that computer science has “come of age”. Computer Science is
sufficient for itself: albeit as an ‘unrestricted science’ from where investigators
must be prepared to follow their problems into any other science whatsoever
(Pantin, quoted by Becher & Trowler,[5, p.32]). That is, we think it sensible that
related disciplines are applied to their domains, so physics is used to address
the design of semiconductors, statistics to analyse web server performance,
accounting to study e-commerce, semiotics and psychology to drive human
interface design, or linguistics to categorise Visual Basic programs. Of course
we should be prepared to learn from many other disciplines. But the program
itself the ultimately the subject of computer science itself.

11

10 No Future

What is post-modernism? And where does it lead? How can something be
after what is modern?. Isn’t modern what we have today?

Modernism is a term used to describe a range of developments in architec-
ture, literature, philosophy, and then society generally. Postmodernism is what
comes after modernism. The question is, does postmodernism:

� replace modernism?, or

� fulfil modernism?

Inasmuch as there is an answer, it is both. (This is the standard postmodern
answer to any question. ’Tsall good). Postmodernism is a replacement for
modernism because the postmodern theories or practices replace the modern.
Postmodern architecture has replaced modern architecture; postmodern fiction
has replaced modern fiction; postmodern programming languages (Perl, late
C ���) replace modern programming languages (Pasal, ANSI C).

But postmodernism (or postmodernity, the society and culture that follows
after modernity) is simultaneously the fulfilment of modernism. Without the
technology developed by modernity, there could be no postmodernity or post-
modernism. Thus, Extreme Programming, for example, aims to replace mod-
ern and late-modern methodologies (e.g. Responsibility Driven Design or the
“Booch” methodology, and the Rational Unified Process or the OPEN process
(now deceased)) [6, 75, 7, 48, 37]. On the other hand, XP also claims to be
the fulfilment of a number of modern movements: including rigorous testing,
consistent coding and naming style, and late-modern programming languages
and environments (e.g. Smalltalk) perhaps with postmodern extensions (JU-
nit, the Refactoring Browser). Similarly, postmodern programming does not
reject but rather embraces elements that are themselves the ultimate products
of modern development.

12

11 Perl,
The First Postmodern Programming Language

What is a postmodern programming language? Or, what is a modern pro-
gramming language? The second question is easier to answer than the first: a
modern programming language supports a single (modern) style of program-
ming, based on recursive decomposition of both code and data.

Modern programming languages can themselves vary in a number of ways.
Common Lisp, APL, and Smalltalk, for example, are based on difference ap-
proaches to programming, but all are modern, and all rely on extensive sup-
port for their programming theories. Pascal, Oberon and Scheme and Self are
more minimalist counterparts, but also modern.

Larry Wall explains how his design of Perl was explicitly based on a post-
modern approach. This explanation shows how postmodernism, easily mis-
uderstood or disregarded by pragmatists, is responsible for a programming
language highly prized and defended by those same pragmatists. Wall’s rea-
soning deserves to be read in in its entirety, but the key point is that the design
was not based on any grand narrative, but on a case-by-case basis: [72].

When I started writing Perl, I’d actually been steeped in enough postmodernism
to know that that’s what I wanted to do. Or rather, that I wanted to do something
that would turn out to be postmodern, because you can’t actually do something
postmodern, you can only really do something cool that turns out to be postmod-
ern. Hmm. Do I really believe that? I dunno. Maybe. Sometimes. You may
actually find this difficult to believe, but I didn’t actually set out to write a post-
modern talk. I was just going to talk about how Perl is postmodern. But it just
kind of happened. So you get to see all the ductwork.

Anyway, back to Perl. When I started designing Perl, I explicitly set out to de-
construct all the computer languages I knew and recombine or reconstruct them
in a different way, because there were many things I liked about other languages,
and many things I disliked. I lovingly reused features from many languages. (I
suppose a Modernist would say I stole the features, since Modernists are hung up
about originality.) Whatever the verb you choose, I’ve done it over the course of
the years from C, sh, csh, grep, sed, awk, Fortran, COBOL, PL/I, BASIC-PLUS,
SNOBOL, Lisp, Ada, C++, and Python. To name a few. To the extent that Perl
rules rather than sucks, it’s because the various features of these languages ruled
rather than sucked.

Perl is a success, and there is no grand narrative for its design. However,
over time Perl is getting more modern, accumulating all the trappings of a
modern language: objects, packages, namespaces, syntax, etc. Again, this is
an example of the post-modern trait of absorbing technology from modernism
while putting it to a rather different use.

While Wall’s rationale is explicit, other languages can place a good claim
to be considered postmodern, at least in some aspects. Hypercard and Visual
Basic extend programming to include forms of multimedia and graphical user
interface (again without getting some religion: Prograph is modern in its in-
sistence on the primacy of visual syntax). Intercal must be considered as a
post-modern language (mostly for non-technical reasons).

13

PL/I could be considered post-modern, as it was designed to support For-
tran, Algol, and even COBOL programming styles, although (unlike Perl) it
attempted to bring them all within a modern unified framework. This mixed
result is involved in Dijkstra calling PL/I a fatal disease [18]:

C ��� is an interesting case. Early C ��� — C with Classes, the C ��� used in
the Design Patterns book is essentially a modern object-oriented programming
language: classes are the primarily (and only) modelling technique, no-one
seriously advocates the procedural features of a language — or rather, these
“faults in construction” are tolerated as faults within the modern narrative.
As C ��� evolves, into what we call “Late C ��� ” (templates, exceptions, dy-
namic casting) the discourses surrounding C ��� change also — leaving the
object-oriented grand narrative, and becoming postmodern, building a theory
of multi-paradigm design and programming upwards from the language fea-
tures [14, 67, 47]. While Design Patterns (as one data point of C ��� circa 1994)
has essentially no examples of C ��� free functions, by the late 2000 Late C ���

is clearly advocated as a postmodern language.
Finally, it is interesting to consider Java vs. C

�
. Both are arguably postmod-

ern languages, although less so than Perl, and with stronger streaks of mod-
ernism, especially in the one-language rhetoric surrounding Java, matched by
the CLR rhetoric surrounding C

�
. There are no significant technical differences

between the two languages — both with C ��� syntax, somewhat moderated
by the Pascal tradition, with a ersatz-Smalltalk object model and a handful of
Modula-3 thrown in for concurrency and modularity. The key reason these
languages are postmodern is that they cannot be considered against technical
criteria: comparing them is like comparing Pepsi and Coke: you don’t drink
the cola — you drink the advertising [69].

14

12 Messy Is Good

15

13 A First Example of Scrap-Heap
System Construction

In the section “No Metaphor” we will have stressed that postmodernism has
a past, and that this past is reflected in both the structure of the discipline and
the practice of programming. In particular, this past exists as a large number
of existing programs that the postmodern programmer can scavenge through
and reuse.

Instead of presenting (as a ready-made product) what we would call a
scrap-heap program, we are going to describe in detail the process of creat-
ing such a program. We do this because many programs are just there: they do
not have to be made, and the kind of programs we are particularly interested in
are those which we feel to be comfortably outside our powers of construction
and conception.

The task is to instruct a computer to print a table of the first thousand prime
numbers, 2 being considered the first prime number.

To write this program, we first connected our computer to the Internet,
downloaded some music from Napster, and then read our email. (You have
to receive email to perform a workday [11]). We received 25 pieces of email of
which 16 were advertisements for Internet pornography, administrivia, or invi-
tations to invest in Nigerian currency trades. After dealing with this email, we
typed “calculate prime numbers” into Google. This found several web sites
regarding prime numbers, and some more pornography. After a while, we
were interrupted, and so moved on to the prime number web sites. In particu-
lar, http://www.2357.a-tu.net includes the “ALGOMATH” C library for
calculating prime numbers; another site included an EXCEL macro which was
to complex to understand. Although we had not programmed in C for years,
after downloading and compiling the library (by typing make), we noticed the
documentation included the following program:

int *pointer , c=0;

if((pointer = am_primes_array(4, 3)) == NULL)
printf("not enough memory\n");

while(*(pointer+c)){
printf("%d\n",*(pointer+c));

c++;
}

return;

We cut and pasted this program into a file and compiled it several times,
having to add a few extra lines (e.g. main () {). Eventually we ran it, and in-
deed it appeared to generate three prime numbers larger than four. We edited
the parameters to am_primes_array to (2,1000), and then ran the output
through wc -l to check that it had printed 1000 numbers.

Here we have completed what we announced at the beginning of this sec-
tion, viz. “to describe in very great detail the composition process of such a
[postmodern] program”.

16

14 We’re all Devo
� The Open toolbox of techniques catalogues development practices without giv-

ing any information about how they would fit into the development lifecycle [41].
� Foote’s Big Ball of Mud pattern language can be read as advocacy, apologia, or

critique of unorganised development, a defence of postmodern programming, or
a parody of patterns in general [26]

� Perl [72]
� Usage-Centered Design deconstructs the subjects of our programs into many in-

dividual user rôles, and the intentions (desires) of those subjects into very many
essential use cases [13].

� Groves has demonstrated how the refinement calculus can describe maintenance,
modification, and refactoring, opening the way for Extreme Formalism [39].

� Scripting Languages (e.g. Tcl, Ruby, JavaScript) are designed to be only some part
of the program, and are never written in themselves [56].

� Lisp: Good News, Bad News, How to Win Big offers a last-ditch defence of late mod-
ernism: “I think there will be a next Lisp. This Lisp must be carefully designed, using
the principles for success we saw in worse-is-better.” [29].

� Dream Machines and Computer Lib present the Digital Equipment Corp. line of
computers in high postmodern style (a large-format comic-book) [53].

� Jackson’s Software Requirements & Specifications provides a (postmodern, post-
structured) dictionary of development terminology, while Problem Frames recon-
textualises his earlier Structured Design and Structured Programming Methods
as one technique amongst many [42, 43].

� The Microsoft-brand Common Language Runtime supports many different pro-
gramming languages with a common (late-modern) execution framework [36].

� The Rational Software Process — How and Why to Fake it describes why unifying
irrational processes is more rational than Unified Processes [58, 48].

� Aspect- and Subject- Oriented Programming in Aspect/J, Hyper/J, and Compo-
sition Filters breaks down the recursive structure of object-oriented programs to
introduce a multidimensional subdivision [45, 40, 1]. The Aspect Browser visu-
alises the topics of discourse within program texts [38].

� Literate programming’s continuation code sections deconstruct the rigorous re-
cursive structure of Pascal programs so that parts of procedures can be presented
in a order that suits explanation and documentation [46].

� Intentional Programming separates syntax and semantics, deconstructing lan-
guages so programs can be written in any language or style [16].

� Evolutionary computation, neural networks, and cellular automata reject large
scale descriptions in favour of local action.

� A Small Matter of Programming [52].
� Anything to do with Spreadsheets [57, 63]
� Agile Methodologies and Extreme Programming. Development proceeds incre-

mentally, customised to suit the occupational culture [12]. Note that Extreme
Programming still insists on a grand narrative, in contrast to Agile development
generally [27].

� Open Source and Mob Software development replace centralised development
by a single company with mongolian hordes of programmers giving their time
free across the internet [32, 60].

� Mr Bunny’s Big Cup O’ Java — Farmer Jake gets to places Niklaus Wirth can only
dream about [23].

� Minimal Manuals — practical, descriptive information written on cards, with no
precise ordering or overarching theory of operation [10].

17

15 Small Stories of Devotion

. . . We have the whole world
in our hands, smiles one. What the hell
are we going to do with it, laughs the other.

Small Stories of Devotion
Dinah Hawken

Gamma, Helm, Johnson and Vlissides Design Patterns remains for us, at
least, a crucial text. It’s not possible to give a single date for the start of post-
modernism in computer science — as with other postmodernisms, “it seems to
have slunk over the horizon” [64, p.158]. If pressed, we would choose OOP-
SLA 1994, where the Design Patterns book first became openly available. In a
lovely postmodern irony, the book is copyrighted 1995.

Reflecting upon Design Patterns from the distance of the best part of a decade
(an octade?) we should pause, once again to be surprised at its continued suc-
cesses, not irritated over its failures. Design Patterns has sparked a number
of imitators: many mediocre, some less so, none as successful as the original,
along with several edited collections and a multinational multiannual confer-
ence metaseries. The idea of an object-oriented design pattern, of the kind
described in the book, is now accepted throughout computer science practice,
incorporated into the libraries and documentation for emerging programming
languages such as Java and C

�
, and taught routinely in most undergraduate

programming curricula. The breadth of the authors’ vision is clear that in the
last eight years, although many patterns have been written on a variety of top-
ics, less than ten additional object-oriented design patterns have been found
that are of a piece with the original twenty-three.

There have been a number of more-or-less organised critiques of Design Pat-
terns, arguing that the patterns approach betrayed the future of modern com-
puter science (a conclusion with which we agree). The nature of this betrayal
varies, of course: some arguing that patterns remove or resist formalisation,
taking us to hell in a phenomenological handbasket [70, 22]; others that design
patterns have corrupted the Alexanderian heritage of a pattern language into
which all the patterns must fit [25, 30].

We contend that Design Patterns is postmodern precisely because it does not
fit into an overarching prescriptive narrative of design: programmers are free
to use or not use patterns as they see fit, as one of many techniques at their
disposal. This makes it easy to adopt design patterns whatever personal or
corporate philosophy you espouse. Precisely because patterns are small inde-
pendent narratives, supported by arguments made on a case-by-case basis in
favour of certain designs, it is easy to learn patterns piecemeal. The structure
of the book is essentially arbitrary, although there are a number of distinct and
subtle relationships between individual patterns [54]. Design Patterns certainly
builds on modern techniques (cohesion and coupling, modern languages such
as C ��� or Smalltalk; OMT design notation): but this is not problematic —
modern technology often ends up in the service of postmodern aesthetics.

Finally, we consider Design Patterns to be postmodern because it is con-
cerned with the practice of programmers working out their own designs, em-
bodied within the programs that they create. The focus of the book is the ar-
tifacts themselves: programs, designs, code, treated as objects of intellectual

18

study and critique. But suffused all through the text, amid the concerns for
pedagogy, efficiency, flexibility, and convincing argument, is the authors’ clear
respect for the topic of their discourses: their love of programs and program-
ming.

I think of the postmodern attitude as that of a man who loves
a very cultivated woman and knows that he cannot say to her, ‘I
love you madly’, because he knows that she knows (and that she
knows that he knows) that these words have already been written
by Barbara Cartland. Still, there is a solution. He can say, ‘As Bar-
bara Cartland would put it, I love you madly.’ At this point, hav-
ing avoided false innocence, having said clearly that it is no longer
possible to speak innocently, he will nevertheless have said what
he wanted to say to the woman: that he loves her, but he loves her
in an age of lost innocence. If the woman goes along with this, she
will have received a declaration of love all the same.

Reflections on the Name of the Rose [20]
Umberto Eco, 1985

19

References
[1] M. Aksit and A. Tripathi. Data abstraction mechanisms in SINA/ST. In OOPSLA

Proceedings, 1988.

[2] Peter Bøgh Andersen. Computer semiotics. Scandinavian Journal of Information sy-
stems, 4:3–30, 1992.

[3] Peter Bøgh Andersen. A Theory of Computer Semiotics. Cambridge University Press,
second edition, 1997.

[4] Peter Bøgh Andersen and Palle Nowack. Tangible objects — connecting infor-
mational and physical space. In Lars Qvortrup et al., editor, Virtual Space: The
Spatiality of Virtual Inhabitated 3D Worlds. Springer-Verlag, 2001.

[5] Tony Becher and Paul Trowler. Academic Tribes and Territories: Intellectual Enquiry
and the Cultures of Discipline. Open University Press, 2nd edition, 2001.

[6] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

[7] Grady Booch. Software Engineering with Ada. Benjamin Cummings, 1983.

[8] Grady Booch. Object Oriented Analysis and Design with Applications. Benjamin Cum-
mings, second edition, 1994.

[9] John Cage. Silence. Wesleyan Univ Press, 1973.

[10] John Carroll. The Nurnberg Funnel: Designing Minimalist Instruction for Practical
Computer Skill. MIT Press, 1990.

[11] Patrick Chan and Carleton Egremont III. Mr Bunny’s Internet Startup game.
Addison-Wesley, 2000.

[12] Larry L. Constantine. The Peopleware Papers. Prentice-Hall, 2001.

[13] Larry L. Constantine and Lucy A. D. Lockwood. Software for Use: A Practical Guide
to the Models and Methods of Usage-Centered Design. Addison-Wesley, 1998.

[14] James O. Coplien. Multi-Paradigm Design for C ��� . Addison-Wesley, 1999.

[15] Ward Cunningham. WikiWikiWeb. http://c2.com/cgi/wiki.

[16] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[17] Edsger W. Dijkstra. Notes on structured programming. In Ole-Johan Dahl, Eds-
ger W. Dijkstra, and C. A. R. Hoare, editors, Structured Programming. Academic
Press, 1972.

[18] Edsger W. Dijkstra. How do we tell truths that might hurt? published as [19], June
1975.

[19] Edsger W. Dijkstra. How do we tell truths that might hurt? In Selected Writings on
Computing: A Personal Perspective, pages 129–131. Springer-Verlag, 1982.

[20] Umberto Eco. Reflections on the Name of the Rose. Secker & Warburg, 1985.

[21] Umberto Eco. Semiotics and the Philosophy of Language. Indiana University Press,
1986.

[22] A. H. Eden, A. Yehudai, and G. Gil. Precise specification and automatic appli-
cation of design patterns. In 1997 International Conference on Automated Software
Engineering (ASE’97), 1997.

[23] Carlton Egremont III. Mr. Bunny’s Big Cup o’ Java. Addison-Wesley, 1999.

[24] Richard Phillips Feynman. What Do You Care What Other People Think?: Further
Adventures of a Curious Character. W.W. Norton, 1988.

20

[25] Brian Foote. The show trial of the gang of four for crimes against com-
puter science. Panel at OOPSLA 1999. http://www.laputan.org/patterns/
gang-of-four.html, November 1999.

[26] Brian Foote and Joe Yoder. Big ball of mud. In Neil Harrison, Brian Foote, and
Hans Rohnert, editors, Pattern Languages of Program Design, volume 4, chapter 29,
pages 653–692. Addison-Wesley, 2000.

[27] Martin Fowler. The new methodology. http://www.martinfowler.com/
articles/newMethodology.html, November 2001.

[28] David Futrelle. Enron contra. CNN MONEY, January 2002. Jan 25th. http://
money.cnn.com/2002/01/25/techinvestor/futrelle.

[29] Richard P. Gabriel. LISP: Good news, bad news, how to win big. AI Expert, 6(6):30–
39, 1991.

[30] Richard P. Gabriel. Back to the future: Worse (still) is better! http:
//dreamsongs.com/NewFiles/ProWorseIsBetterPosition.pdf, De-
cember 2000.

[31] Richard P. Gabriel. Wither software. http://www.dreamsongs.com/
NewFiles/WhitherSoftware.pdf, March 2002.

[32] Richard P. Gabriel and Ron Goldman. Mob Software: The Erotic Life of Code. Dream-
songs Press, 2000.

[33] Richard P. Gabriel and Dave Thomas. Computing rainbow. Report of Feyerabend
Workshop, http://www.dreamsongs.com/Feyerabend/FeyerabendW4.
html, May 2001.

[34] William Gibson. Neuromancer. Ace Books, 1984.

[35] Les Goldschlager and Andrew Lister. Computer Science : A Modern Introduction.
Prentice-Hall, 1982.

[36] John Gough. Compiling for the .NET Common Language Runtime. PTR PH, 2002.

[37] Ian Graham, Brian Henderson-Sellers, and Houman Younessi. The OPEN Process
Specification. Addison-Wesley, 1997.

[38] William G. Griswold. The aspect browser. http://www.cs.ucsd.edu/users/
wgg/Software/AB/, March 2002.

[39] Lindsay Groves. Evolutionary Software Development in the Refinement Calculus. PhD
thesis, Victoria University of Wellington, 2000.

[40] Willian Harrison and Harold Ossher. Subject-oriented programming (a critique of
pure objects). In OOPSLA Proceedings, pages 411–428, 1993.

[41] Brian Henderson-Sellers, Anthony Simons, and Houman Younessi. The OPEN Tool-
box of Techniques. Addison-Wesley, 1998.

[42] Michael Jackson. Software Requirements & Specifications. ACM, 1995.

[43] Michael Jackson. Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley, 2001.

[44] Charles Jencks. The Language of Post-Modern Architecture. Academy Editions, 1987.

[45] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In ECOOP Proceedings, pages 327–
353, 2001.

[46] Donald Ervin Knuth. Literate Programming. CSLI Publications, 1992.

[47] Andrew Koenig. Idiomatic design. In Addendum to the proceedings of the 10th annual
conference on Object-oriented programming systems, languages, and applications, pages
14–19. ACM Press, 1995.

21

[48] Philipe Krutchen. The Rational Unified Process. Addison-Wesley, 1999.

[49] B. Leuf and W. Cunningham. The Wiki Way. Addison-Wesley Publication Co., 2001.

[50] Jean-François Lyotard. From the postmodern condition. In Anthony Easthope and
Kate McGowan, editors, A Critical And Cultural Reader. Allen & Unwin, 1992.

[51] Julie Mason. Auditing software raised ’red alert’. Houston Chronicle, Jan-
uary 2002. Jan 25th. http://www.chron.com/cs/CDA/printstory.hts/
business/1227548.

[52] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User Comput-
ing. MIT Press, 1993.

[53] Theodor H. Nelson. Computer Lib/Dream Machines. Aperture, 1974.

[54] James Noble and Robert Biddle. Patterns as signs. In ECOOP Proceedings, 2002.

[55] James Noble, Robert Biddle, and Ewan Tempero. Metaphor and metonymy in
object-oriented design patterns. In Proceedings of Australian Computer Science Con-
ference (ACSC). Australian Computer Society, 2002.

[56] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[57] Raymond D. Panko. What we know about spreadsheet errors. Journal of End User
Computing, 10(2):15–21, Spring 1998.

[58] David L. Parnas and Paul C. Clements. A rational design process: How and why
to fake it. IEEE Transactions on Software Engineering, 12(2):251–257, 1986.

[59] Alan Perlis. Epigrams on programming. ACM SIGPLAN Notices, 17(9), September
1982.

[60] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly & Associates, 2001.

[61] H. Robinson, P. Hall, F. Hovenden, and J. Rachel. Postmodern software develop-
ment. The Computer Journal, 31:363–375, 1998.

[62] Margaret Rose. The Post-Modern and the Post-Industrial : A Critical Analysis. Cam-
bridge University Press, 1991.

[63] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld, T. R. G. Green, and
G. Rothermel. Wysiwyt testing in the spreadsheet paradigm: An empirical eval-
uation. In Proceedings of the 22nd International Conference on Software Engineering,
pages 230–239, June 2000.

[64] Stuart Sim, editor. The Routledge Companion to Postmodernism. Routledge, 2001.

[65] Alan Sokal and Jean Bricmont. Intellectual Impostures. Profile Books, July 1998.

[66] Jack B. Sowards. Star trek II: the Wrath of Kahn. Motion Picture.

[67] Bjarne Stroustrup. Why C ��� is not just an object-oriented programming language.
In Addendum to the proceedings of the 10th annual conference on Object-oriented pro-
gramming systems, languages, and applications, pages 1–13. ACM Press, 1995.

[68] Antero Taivalsaari. Classes vs. prototypes: Some philosophical and historical ob-
servations. In James Noble, Antero Taivalsaari, and Ivan Moore, editors, Prototype-
Based Programming: Concepts, Languages and Applications, chapter 1. Springer-
Verlag, 1999.

[69] James B. Twitchell. twenty ADS that shook the WORLD. Three Rivers Press, 2000.

[70] Peter van Emde Boas. Resistance is futile; formal linguistic observations on design
patterns. Technical report, University of Amsterdam, 1997.

[71] Andy Wachowski and Larry Wachowski. The Matrix. Technicolor 35mm Motion
Picture, 1999.

22

[72] Larry Wall. Perl, the first postmodern computer language. http://www.wall.
org/˜larry/pm.html, Spring 1999.

[73] Nigel Wheale, editor. The Postmodern Arts : An Introductory Reader. Routledge,
1995.

[74] Winfried Wilcke. Computer architecture challenges in the next ten years. Keynote
talk to Australian Computet Science Week 2002.

[75] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software. Prentice-Hall, 1990.

[76] Niklaus Wirth. Algorithms � Data Structures � Programs. Prentice-Hall, 1976.

[77] Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge and Kegan Paul,
1961.

[78] Edward Yourdon and Jennifer Yourdon. Time Bomb 2000!: What the Year 2000 Com-
puter Crisis Means to You! Prentice Hall PTR, 1997.

[79] Liping Zhao and James O. Coplien. Symmetry in class and type hierarchy. In
James Noble and John Potter, editors, In Proc. Fortieth International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS Pacific 2002), Confer-
ences in Research and Practice in Information Technology. Australian Computer
Society, 2002.

23

