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Abstract

Identifying code duplication in large multi-platform software system is a challenging problem. This is due to a variety of reasons including

the presence of high-level programming languages and structures interleaved with hardware-dependent low-level resources and assembler

code, the use of GUI-based configuration scripts generating commands to compile the system, and the extremely high number of possible

different configurations.

This paper studies the extent and the evolution of code duplications in the Linux kernel. Linux is a large, multi-platform software system; it

is based on the Open Source concept, and so there are no obstacles in discussing its implementation. In addition, it is decidedly too large to be

examined manually: the current Linux kernel release (2.4.18) is about three million LOCs.

Nineteen releases, from 2.4.0 to 2.4.18, were processed and analyzed, identifying code duplication among Linux subsystems by means of a

metric-based approach. The obtained results support the hypothesis that the Linux system does not contain a relevant fraction of code

duplication. Furthermore, code duplication tends to remain stable across releases, thus suggesting a fairly stable structure, evolving smoothly

without any evidence of degradation. q 2002 Published by Elsevier Science B.V.
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1. Introduction

Large multi-platform software systems are likely to

encompass a variety of programming languages, coding

styles, idioms and hardware-dependent code. Analyzing

multi-platform source code, however, is challenging.

Assembler code is often mixed with high-level program-

ming language. Furthermore, scripting languages, configur-

ation files, and hardware specific resources are typically

used.

Often, the system was originally conceived as a single

platform application, with a limited number of functional-

ities and supported devices. Then, it evolved adding new

functionalities and was ported on new product families: in

other words, new devices and/or target platforms were

added. When writing a device driver or porting an existing

application to a new processor, developers may decide to

copy an entire working subsystem and then modify the code

to cope with the new hardware. This technique ensures that

their work will not have any unplanned effect on the original

piece of code they have just copied. However, this evolving

practice promotes the appearance of duplicated code

snippets, also called clones.

In the literature there are many papers proposing various

methods for identifying similar code fragments and/or

components in a software system ([2,5,11] and [18,19,22,

23]). However, the information gathered accounts for local

similarities and changes. As a result, the overall picture

describing the macro system changes is difficult to obtain.

Moreover, if chunks of code migrate via copy/remove or

cut-and-paste among modules or subsystems, the duplicated

code may not be easily distinguished from freshly-

developed one.

Indeed, only few papers have studied the evolution of

similar code fragments among several versions of the same

software system [1,20]. As a software system evolves, new

code fragments are added, certain parts deleted, modified or

remain unchanged, thus giving raise to an overall evolution

difficult to represent by fine-grained similarity measures.

The goal of this paper is to study the evolution of the

amount of cloned code in a large, multi-platform, multi-

release software system. Intuitively, the larger the fraction

of code fragments shared by two subsystems, the higher

their similarity. Two completely different subsystems are

likely to have a very low similarity and very little source

code in common. Similarity between subsystems has been
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measured through the metric-based clone detection tech-

nique presented in Ref. [22] and evaluated by measurement

of the common ratio (at function grain-level) between two

subsystems proposed in Ref. [13].

Nineteen releases of a multi-million lines-of-code soft-

ware, the Linux kernel (releases 2.4.0 through 2.4.18), have

been used as case study. Linux is an open source UNIX-like

operating system, created by Linus Torvalds with devel-

opers throughout the world. Originally, it was targeted to

32-bit x86-based PCs (386 or higher). Nowadays the kernel

2.4.18 also runs on a variety of platforms including Compaq

Alpha AXP, Sun SPARC and UltraSPARC, Motorola

68000, PowerPC, ARM, Hitachi SuperH, IBM S/390,

MIPS, HP PA-RISC, Intel IA-64 and DEC VAX. Port is

currently in progress to the AMD x86-64 architecture.

The Linux kernel is almost entirely written in C

language, with few assembler boot files (plus TCL/TK

and Perl configuration scripts). The kernel configuration is

controlled by macros and preprocessor switches (about

400). Macros allow to include/exclude kernel functionalities

(e.g. math coprocessor emulation), specific device drivers

(e.g. Adaptec AH 2940) and entire subsystems (e.g. ISDN),

or to produce a module loadable at running time. We have

parsed and analyzed the C source code of the Linux kernel,

extracting a set of software metrics characterizing each

function. Two or more code fragments (i.e. functions) were

considered to be clones if the extracted metrics assume

exactly the same values.

The evaluation of the cloning extent has been performed

at different levels. Clones have been identified among top-

level directories of the source tree, which essentially

correspond to major subsystems. Furthermore, the same

analysis has been performed between non top-level

directories at the same nesting level of the source tree, i.e.

within major subsystems.

In particular, the experimental activity we have carried

out has addressed the following research questions:

† Which is the cloning extent within the Linux 2.4.x kernel

major subsystems?

† Which is the cloning extent within the subsystems related

to the different supported platforms?

† Is there a trend in cloning ratio when the system

evolves?

This paper is organized as follows. First, the clone

detection process is described in Section 2. Then, Section 3

presents the case study. The experimental results are

reported and discussed in Section 4. Finally, related work

is summarized in Section 5, while conclusions and work-in-

progress are reported in Section 6.

2. The clone detection process

The goal of this paper is to study the potential impact and

the evolution of clones in terms of cloning ratio between

different subsystems of a large multi-platform software

system. Clones are defined as code fragments indistinguish-

able under a given criterion. Different granularities may be

considered when extracting clone information (e.g. com-

pound statement or function body). In this paper, we focused

our attention on function definitions. The process defined to

study clone evolution, outlined in Fig. 1, relies on the

concept of clone clusters. A cluster is a set of indistinguish-

able functions. The process consists of the following,

subsequent phases:

(1) Handling of preprocessor directives;

(2) Function identification;

Fig. 1. The clone identification process.
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(3) Metrics extraction; and

(4) Cluster identification and computation of the cloning

ratio.

Metrics extraction can be performed in a time linear in

system size. However, since the metric extractor used was

not optimized, the extraction of metrics for each Linux

release required about one hour on a Pentium III (850 MHz

128 Mbytes RAM).

Once metrics were available, clone detection was

performed. Clone detection (i.e. clustering) has Oðn2Þ

complexity, where n is the number of functions. The entire

process required about one day for all the nineteen Linux

releases. The following subsections deal with the details of

each phase.

2.1. Handling preprocessor directives

Parsing programming languages such as C or Cþþ

poses several challenges. Besides the intrinsic programming

language peculiarities (e.g. union, struct, classes, function

pointers, etc.), preprocessor directives must be suitably

handled. Preprocessing directives are usually managed by a

dedicated compiler component, the preprocessor (e.g. the

GNU cpp). Parsing multi-platform code where preproces-

sing directives are platform-dependent is equivalent to

projecting the source code on a given hardware/software

configuration.

To obtain information on several platforms, at least two

approaches are feasible:

† Preprocess and parse the code sources with different

configurations; or

† Adopt a fictitious reference configuration.

Unfortunately, for large size systems such as Linux, the

first approach may not be realistic or feasible. For example,

the Linux 2.4.0 kernel contains more than 7000 files, it runs

on ten different processors, 400 preprocessor switches drive

the actual kernel configuration. Each preprocessor switch

can assume three values:

† Y: the code is included into the compiled kernel;

† N (or commented switch): the code is excluded; or

† M: a dynamically loadable module is produced.

Clearly, among the 10 £ 4003 possibilities there are

many meaningless configurations (e.g. it is very unlikely

that a machine has multiple different sound boards).

On the contrary, by defining a fictitious reference

configuration, no specific architecture is identified. This

approach is well suited for the identification of function

clones among several platform-dependent sub-systems

without recompiling the kernel.

The heuristic adopted to handle preprocessor directives is

based on the consideration that very often only the then part

of an #ifdef is present; moreover, the then branch almost

always contains more code than the else branch. Among the

3243 source (.c) files of the 2.4.0 kernel, 2172 contain at

least one #ifdef, whereas only 1140 files have an #else
preprocessor directive. The actual number of #ifdef is by

far larger (22134) than the number of #else (3565), and, in

terms of volume (measured in LOCs), the then branch is an

order of magnitude larger (about 300 KLOCs versus 20

KLOCs).

Since preprocessor directives, i.e. #ifdef, must be

balanced, a parsing of the preprocessor statements can

project the source on if branch; the #ifdef conditions

were forced to be true, thus extracting the then branches.

The preprocessor elimination step generates sources with

removed preprocessor directives, regardless of the hard-

ware/software architecture. Unfortunately, there are few

cases where this heuristic produces syntactically wrong C

code. Namely, a C scope (i.e. {) may be opened in the then
part of an #ifdef subject to condition EXP, and the scope

end (}) be located in a different preprocessor statement

within the #else part. This also means that the scope is

closed by a combination of expressions where EXP is

negated. This is the situation found, for example, in the

Linux 2.4.0 ultrastor.c scsi driver. Due to the very low

number of such cases (in the 2.4.0 kernel, twenty on about

48,000 functions), these were considered pathological

situations, detected and signaled for manual intervention.

2.2. Function identification

Large C systems are likely to encompass a variety of

mixed programming styles, programming patterns, idioms,

coding standard and naming conventions. Most noticeably,

both the ANSI-C and the old Kernighan & Ritchie style may

be present. A tool inspired by island-driven parsing has been

implemented to localize and extract function definitions.

Once islands (e.g. function bodies or signatures) were

identified, the in-between code was scanned, and the

function definition extracted by means of a hand-coded

parser.

2.3. Metrics extraction

Following the approach proposed in Ref. [22], the

functions extracted as illustrated above were compared on

the basis of software metrics accounting for layout, size,

control flow, function communication and coupling. In

particular, each function was modeled by 54 software

metrics:

† The number of passed parameters;

† The number of LOCs;

† The number of statements;

† The cyclomatic complexity;

† The number of used/defined local variables;

† The number of used/defined non-local variables;
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† Software metrics accounting for the number of arithmetic

and logic operators (þþ , 22 , . ¼ , , , etc.);

† The numbers of function calls;

† The numbers of return/exit points;

† The numbers of structure/pointer access fields;

† The numbers of array accesses;

† Software metrics accounting for the number of language

keywords (e.g. while, if, do).

Different set of metrics could indeed be adopted (e.g.

those used in Ref. [22]). However, we experienced that, on

sufficiently large systems, the use of different sets of metrics

does not significantly influence the results.

Differently from the procedure customarily followed in

the past (e.g. in Ref. [22]), function names and file/unit

names were not used as metrics.

2.4. Clone cluster identification

Studying commonalities between software systems/sub-

systems, function identity may be disregarded in favor of a

different concept: clone clusters. A clone cluster can be seen

as a set of similar code fragments which contains identical

fragments or fragments exhibiting negligible differences

from a given fragment prototype. Each pair of functions was

compared, and, exact metrics identity was required to

classify two functions as clones. This assumption corre-

sponds to the ExactCopy and DistinctName classes

presented in Ref. [22].

Let Mf ¼ km1ðf Þ;…;mnðf Þl be the tuple of metrics

characterizing a function f, where each miðf Þ (i ¼ 1…nÞ is

the ith software metric chosen to describe f (e.g. number of

passed parameters, number of LOCs, cyclomatic complex-

ity, number of used/defined local variables, and number

used/defined non-local variables).

For any given function f, let Cf be the fth clone cluster.

Cf is the subset of function g belonging to the considered

software system/sub-system Sk; that exhibits software

metric values miðgÞ identical or similar to miðf Þ :

Cf ¼
def

{glg [ Sk ^ miðf Þ n miðgÞ; i ¼ 1…n; miðf Þ [ Mf }

This represents a necessary condition: the n operator was

used to state that g metric values, miðgÞ; may be chosen to

meet the specific goal. To identify similar functions, a

threshold may be adopted:

miðf Þ n miðgÞ ) ðmiðf Þ # miðgÞ # uuðiÞ ^ ulðiÞ # miðgÞ

# miðf ÞÞ;

i ¼ 1…n; miðf Þ [ Mf

where ulðiÞ and uuðiÞ are the ith lower/upper bounds. Inside

this range of values, g is considered to be a clone of f.

Clearly, to collect exact, or nearly exact, function

duplicates, n is implemented by the equality operator.

2.5. Measurement of the cloning ratio

Given two different software systems, say A and B,

information about the cloning extent between such software

systems can be measured in terms of common ratio. The

common ratio (CR) between A and B is defined as the ratio

of the number of functions belonging to A, having lCf l – 0

when compared to functions in B, to the number of functions

contained in A. In other words, it is the ratio of A functions

having clones in B to A size. It should be noted that,

according to the definition above, and due to the possibly

different number of functions in A and B, the CR of A to B

may be different from the CR of B to A.

3. Case study

Linux is a Unix-like operating system that was initially

written as a hobby by a Finnish student, Linus Torvalds

[25]. The first Linux version, 0.01, was released in 1991.

Since then, the system has been developed by the

cooperative effort of many people, collaborating over the

Internet under the control of Torvalds. In 1994, version 1.0

of the Linux kernel was released. The current version is 2.4,

released in January 2001.

As far as code analysis, program understanding and

reverse software engineering practices are concerned, the

peculiar characteristics of the Linux kernel make it an ideal

candidate as testbed for automated code examination and

comprehension tools. It is based on the Open Source

concept, and so there are no obstacles in discussing its

implementation. It is not toy software, but one that is

representative of real-world software systems. In addition, it

is decidedly too large to be examined manually.

Unlike other Unixes (e.g. FreeBSD), Linux is not directly

related to the Unix family tree, in that its kernel was written

from scratch, not by porting existing Unix source code. The

very first version of Linux was targeted at the Intel 386

(i386) architecture. At the time the Linux project was

started, the common belief of the research community was

that high operating system portability could be achieved

only by adopting a microkernel approach. The fact that now

Linux, which relies on a traditional monolithic kernel, runs

on a wide range of hardware platforms, including palmtops,

Sparc, MIPS and Alpha workstations, not to mention IBM

mainframes, clearly points out that portability can also be

obtained by the use of clever code structure.

Linux is based on the Open Source concept: it is

developed under the GNU General Public License and its

source code is freely available to everyone. The most

peculiar characteristic of Linux is that is not an organiz-

ational project, in that it has been developed through the

years thanks to the efforts of volunteers from all over the

world, who contributed code, documentation and technical

support. Linux has been produced through a software

development effort consisting of more than 3000 developers
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distributed over 90 countries on five continents [24]. It

should be noted that, due to the nature of the decentralized,

voluntary basis development effort, no formalized develop-

ment processes has been adopted, and thus it is worth

investigating the quality characteristics of the resulting

software.

A key point in Linux structure is modularity. Without

modularity, it would be impossible to use the Open Source

development model, and to let lot of developers work in

parallel. High modularity means that people can work

cooperatively on the code without clashes. Possible code

changes have an impact confined to the module into which

they are contained, without affecting other modules. After

the first successful portings of the initial i386 implemen-

tation, the Linux kernel architecture was redesigned, in

order to have one common code base that could simul-

taneously support a separate specific tree for any number of

different machine architectures.

The use of loadable kernel modules, which are

dynamically loaded and linked to the rest of the kernel at

run-time, was introduced with the 2.0 kernel version [14].

Kernel modules further enhanced modularity, providing an

explicit structure for writing hardware-specific code (e.g.

device drivers). Besides making the core kernel highly

portable, the introduction of modules allowed a large group

of people to work simultaneously on the kernel without

central control. The kernel modules are a good way to let

programmers work independently on parts of the system

that should be independent.

An important management decision was establishing, in

1994, a parallel release structure for the Linux kernel. Even-

numbered releases were the development versions on which

people could experiment with new features. Once an odd-

numbered release series incorporated sufficient new features

and became sufficiently stable through bug fixes and

patches, it would be renamed and released as the next

higher even-numbered release series and the process would

begin again. The principal exception to this release policy

has been the complete replacement of the OS virtual

memory system in the 2.4 version series (i.e. within a stable

release). The whole story, which has also led to the birth of

alternative kernel trees, is dealt with in Refs. [3,4]. At the

time of writing (April 2002), the latest kernel releases are

2.4.18 (stable) and 2.5.8 (experimental).

Linux kernel version 1.0, released in March 1994, had

about 175,000 lines-of-code. Linux version 2.0, released in

June 1996, had about 780,000 lines-of-code. Version 2.4,

released in January 2001, has more than two millions lines-

of-code (MLOCs). The current 2.4.18 release is composed

of about 14,000 files; its size is about 3 MLOCs (.c and.h).

Counting the LOCs contained in.c files (i.e. excluding

include files), its size is about 2.5 MLOCs (.c files only).

The architecture-specific code accounts for 422 KLOCs. In

platform-independent drivers (about 1800 files) there are

about 1.6 MLOCs. The core kernel and file systems contain

12 KLOCs and 235 KLOCs, respectively.

Table 1, which is an updated version of the one published

in Ref. [24], shows the most important events in the Linux

kernel development time table, along with the number of

releases produced for each development series.

4. The Linux kernel cloning analysis

The results reported in this paper were computed using a

slightly different procedure as compared to the one followed

in Ref. [13]. In Ref. [13], the clones were identified

considering all functions contained in the system regardless

of function sizes (measured as the number of LOCs of the

function body). Doing so, small functions (e.g. functions

setting or getting the value of a structure) very often cluster

together. However, it may be argued that these functions do

not really represent clones and thus that the resulting CR is

biased by those false positives.

To study the influence of short functions on CR, this

index was computed for two different configurations. The

first configuration corresponds to the assumptions made in

Ref. [13]; namely, all functions, regardless of their size,

were considered. In the second configuration, instead, all

functions with a body shorter than five LOCs were

Table 1

Linux kernels most important events

Release series Initial Number of releases Time to start of next release series (months) Duration of series (months)

0.01 9/17/91 2 2 2

0.1 12/3/91 85 27 27

1.0 3/13/94 9 1 12

1.1 4/6/94 96 11 11

1.2 3/7/95 13 6 14

1.3 6/12/95 115 12 12

2.0 6/9/96 34 24 32

2.1 9/30/96 141 29 29

2.2 1/26/99 19 9 Still current

2.3 5/11/99 60 12 12

2.4 1/4/01 18 – Still current

2.5 22/11/01 8 – Still current
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discarded, detecting clone clusters and computing the CR

only on the remainder.

Analyzing CRs on several Linux releases, we noticed

that CRs among all possible combinations of Linux

subsystems were often null or very low, thus leading to

sparse cloning matrices. Furthermore, according to the

definition of CR, a high CR value does not necessarily imply

high number of replicated code snippets. A 50% CR may

correspond just to a couple of cloned functions, if small

subsystems are considered. On the other hand, if the

analyzed subsystems contain a high number of functions,

say 1000, even a CR as low as 1%, is worth to be considered.

In the analysis that follows, we report results that were

considered significant either in relative (e.g. high CR

values) or in absolute terms (e.g. high number of cloned

functions).

4.1. Kernel 2.4.18 analysis

The experimental activity presented in this subsection

was driven by the first two research questions specified in

Section 1, i.e. computing the cloning ratio among major

Linux architectural components and the percentage of

duplicate code among different supported platforms.

However, in the authors’ knowledge, it does not exist any

documentation of the Linux architecture, in that no

document describes the system at a high level of abstraction.

Bowman et al. derived both the conceptual architecture (the

developers’ system view) and the concrete architecture (the

implemented system structure) of the Linux kernel [6,9,10].

They started from a manual hierarchical decomposition of

the system structure, consisting of the assignment of source

files to subsystems, and of subsystems hierarchically to

subsystems. As shown in Ref. [9], most of the times, the

extracted subsystems correspond to directories in the source

Fig. 2. Two examples of clones found.

Table 2

CRs $1% among major subsystems

Subsystems compared Functions $5 LOCs All functions

Common ratio (%) Functions cloned Common ratio (%) Functions cloned

arch-drivers 1.43 152 13.46 1821

fs-drivers 2.06 93 10.38 549

ipc-arch 1.45 1 1.35 1

kernel-arch 2.11 114 13.17 902

lib-arch 2.90 9 2.86 14

lib-net 1.45 4 1.43 7

mm-drivers 1.36 18 4.80 78
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code tree. For simplicity’s sake, in the analysis performed, it

has been assumed that each directory of the source tree

contains a subsystem (at a proper level of the system

hierarchy). Thus, the search for cloned code was performed

by comparing the code contained in any two directories.

Fig. 2 shows two different examples of function clones

identified. The first clone pair (top of the figure), is an

example of a function copied from mips to mips64
memory management subsystem. The second clone pair

is instead a cross-system example: although the accessed

data structure has different field names, the action

actually performed is the same, i.e. the removal of an

item from a concatenated list.

Table 2 reports the CRs higher than 1% among Linux

major subsystems (i.e. the twelve top-level directories,

documentation and include directories excluded). CRs are

reported along with the corresponding number of cloned

functions, for both the considered configurations (i.e.

functions longer than five LOCs, and all functions).

Observing Table 2, it can be recognized that:

† The table contains only seven rows, out of 144

possibilities; in other words, only very few subsystem

comparisons gave raise to appreciable clone extents;

† The difference between the results obtained considering

all functions and those obtained with a 5-LOCs threshold

is relevant;

† Though CRs among major subsystems is not very

high, even a small ratio (e.g. 1.43% between arch
and drivers) corresponds to a non-negligible (152)

number of cloned functions, as these subsystems are

very large.

It is worth pointing out that in the two configurations CRs

were computed considering, the ratio to the total number of

retained functions. This may lead to two counterintuitive

phenomena: higher CR for functions $5 LOCs and

different CRs corresponding to the same number of cloned

functions, because of the lower number of functions that are

assumed to belong to the system.

A similar approach was followed to evaluate the cloning

extents within the subsystems related to the different

supported platforms. The arch directory contains fifteen

sub-directories, each corresponding to a supported pro-

cessor architecture (e.g. i386, s390, sparc). Each

Table 3

CRs $10% among mm architecture dependent code

Subsystems compared Functions $5 LOCs All functions

Common ratio (%) Functions cloned Common ratio (%) Functions cloned

i386-mips 11.11 1 10.34 1

i386-s390 11.11 1 10.34 1

i386-sh 14.81 3 17.24 3

mips64-mips 22.61 6 28.57 8

mips-mips64 11.59 2 17.38 3

s390-arm 10.00 1 13.64 2

s390-i386 15.00 2 13.64 2

s390-mips 10.00 1 9.09 1

s390-sh 15.00 2 13.64 2

sh-i386 10.00 1 11.63 1

sparc64-sparc 12.77 2 14.00 2

Table 4

CRs $5% among drivers

Subsystems compared Functions $5 LOCs All functions

Common ratio (%) Functions cloned Common ratio (%) Functions cloned

sbus-char 6.62 53 14.48 138

sgi-char 6.80 7 15.83 19

tc-char 9.38 6 21.69 18

i2c-parport 5.44 8 10.45 23

input-usb 5.88 3 11.86 7

sgi-macintosh 5.83 6 11.67 14

tc-macintosh 12.50 8 25.30 21

zorro-pci 8.33 1 8.33 1

sgi-sbus 10.68 11 17.50 21

tc-sbus 10.94 7 22.89 19

sgi-tc 7.77 8 11.67 14

tc-sgi 12.50 8 20.48 17
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management mm implementations. In particular, Table 3

shows the CRs among mm of the architecture supported by

Linux 2.4.18. A different threshold (10%) higher than the

1% used for Table 2, was used to avoid reporting

meaningless data. Only 10 rows out of 225 were retained

and, as it can be readily seen in Table 3, the mm subsystems

contain only few cloned functions even if the CR values are

non-negligible.

CRs were also computed for the core kernel subsystem

(e.g. arch/i386/kernel versus arch/ppc/ker-
nel). Those results were not presented since, in a very

similar way to mm, even if some architectures exhibit

relevant CRs the number of cloned functions were very low

(often one, sometimes two or three).

Data on Linux 2.4.18 confirmed results obtained on

different Linux releases [9,13]. In most cases, the

implementation of similar functionalities was carried out

by resorting to code reuse (function dependencies across

different subsystems) rather than cloning. This is clearly

shown by the small number of subsystem comparisons

exhibiting a non-negligible number of cloned functions.

There are some exceptions, however; among these, the

CR between the mips64 and mips mm subsystems

(22.61%, with six cloned functions). The ratio obtained

without filtering out functions smaller than five LOCs was

slightly higher (28.57%), but considerably smaller than the

38.4% computed on the Linux kernel 2.4.0 and reported in

Ref. [13]. However, even in this case, the absolute number

of cloned function is low.

Table 4 reports data on CR and cloned functions among

Linux drivers. Driver subsystems (e.g. the SCSI and IDE

Fig. 3. Overall evolution of common ratio.

Fig. 4. Evolution of common ratio between mm and fs.
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largest part of the kernel code and are subjected to

continuous evolution. CR among driver subsystems is fairly

low, and in general only few functions are duplicated. An

exception seems to be the number of duplicated functions

between the char and sbus subsystems, where 53 clone

clusters were identified.

4.2. Cloning evolution

This section aims to investigate how the percentage of

clones varied in the Linux kernel from release 2.4.0 to

release 2.4.18. The analysis has been performed at different

levels of granularity:

(1) The overall cloning on the entire Linux kernel;

(2) The cloning among major subsystems; and

(3) The cloning among architecture-dependent code of

some subsystems.

Fig. 3 reports the evolution of the overall CR, computed

considering both all functions and only functions $5 LOCs.

The figure shows that results are very different if small

functions are filtered. In both cases, the cloning variation

over releases is not relevant. Focusing our analysis on CR

for functions $5 LOCs (as well as in all further analyses

presented in this subsection), the CR varies from 14.33 to

16.11% (i.e. a maximum difference of about 2%) and its

standard deviation is 0.03. This supports the hypothesis that

no considerable re-factoring was performed across 2.4.x

releases.

The analysis of CR evolution among major subsystems

confirms the previous impressions. Even in this case, no

relevant change in the CR has been detected (variations are

less than 2%). Fig. 4 shows the evolution of cloning between

fs and mm subsystems. It is worth noting that, from release

2.4.0 to release 2.4.4, the CR in mm decreased of about 1.6%

(about 20 functions), indicating a possible re-factoring

activity.

In a way similar to the results presented in Section 4.1,

the most interesting behavior of CR evolution were found

inside the mm subsystem, in particular between the mips64
and mips architecture-dependent code. The values of CR

are plotted in Fig. 5. The figure shows that the CR ranged

from 37.68% for release 2.4.0 (slightly different from the

38.4% reported in Ref. [13] and computed considering all

functions) to 22.60% for release 2.4.18.

One may argue that programmers first ported the mm
subsystem to the mips64 architecture by cloning portions

of the mips code, and then performed a re-factoring.

However, a more detailed analysis demonstrated the exact

contrary. In fact, the number of functions ($5 LOCs)

composing the mips64 portion of mm varied from 69 in

release 2.4.0 to 115 in release 2.4.18, in that the number of

cloned functions remained constant to:

37:68% of 69 ¼ 22:60% of 115 ¼ 26

In other words CR, as much like any relative measure,

should be used with great care, always resorting to the

examination of absolute values.

5. Related work

Previous research studied both the detection and the use

of clones for widely varying purposes, including program

comprehension, documentation, quality evaluation, or

system and process restructuring. Some of the techniques

used for clone detection are based on a full text view of the

source code [2,18]. Other approaches, such as those pursued

by Mayrand et al. [22] and Kontogiannis et al. [19], focus on

whole sequence of instructions (BEGIN–END blocks or

Fig. 5. Evolution of common ratio between mips and mips64 code inside the mm subsystem.
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functions) and allow the detection of similar blocks using

metrics. Kontogiannis et al. [19] detect clones also using

two further pattern matching techniques, namely dynamic

programming matching and statistical matching between

abstract code description patterns and source code. Finally,

another clone detection tool, proposed by Baxter et al. in

Ref. [5], relies on the comparison of subtrees from the

Abstract Syntax Tree of a system.

Several applications of clone detection have also been

investigated: Johnson [18] visualizes redundant substrings

to ease the task of comprehending large legacy systems.

Mayrand et al. [22], as well as Lagüe et al. [21], document

the cloning phenomenon for evaluating the quality of

software systems. Lagüe et al. [21] have also evaluated the

benefits, in terms of maintainability of the system, of the

detection of cloned methods. Finally, Baxter et al. [5]

restructure systems by replacing clones with macros, in

order to reduce the quantity of source code and to facilitate

maintenance.

Several studies have been performed to analyze the

Linux kernel. As mentioned before, in Refs. [7,8] Bowman

et al. recovered the actual kernel architecture. Further

analyses were executed by Tran et al. in Refs. [26,27]. The

first experience in analyzing the evolution of the Linux

kernel in terms of metrics was done by Godfrey and Quiang

Tu in Ref. [15]. Successively, the same authors performed a

study of the evolution of one of the subsystems of the Linux

kernel (the SCSI subsystem) also in terms of cloning ratio.

They also developed a tool to aid software maintainers in

understanding how large software systems have changed

over time and, particularly, to help modeling long-term

evolution of systems that have undergone architectural and

structural changes. Results of these studies are summarized

in Ref. [16].

Investigation performed by the authors in predicting

Linux kernel evolution using time series has been reported

in Ref. [12]. Finally, an experience in applying time series to

cloning ratio prediction was presented in Ref. [1].

6. Conclusions

The CR for several releases of the Linux kernel has been

measured, discussing the process and the strategies that can

be adopted to analyze a large multi-platform, multi-million

lines-of-code real word software system. Software metrics

at function level were extracted and duplicate code among

kernel subsystems detected. Different thresholds were

adopted to extract the CRs, to avoid biased results due to

false positives induced by small functions. In the present

study, we considered two configurations, the first corre-

sponding to the analysis of all functions belonging to the

system, the second discarding the functions with a body

shorter than five LOCs.

Linux has not been developed through a well-defined

software engineering process, but by the cooperative work

of relatively uncoordinated programmers. Nevertheless, the

overall CR, as well the CRs of its subsystems, are

remarkably low, especially if small functions are not taken

into account.

The answers to the research questions can therefore be

summarized as follows:

† Cloning ratio among sub-systems can be considered at a

physiological level;

† Recently-introduced architectures tend to exhibit a

slightly higher cloning ratio. The reason for this is that

a subsystem for a new architecture is often developed

incrementally respect to a similar one (e.g. mips64
from mips); and

† The evolution of CR, at the overall level, tends to be

fairly stable, thus suggesting that the software

structure is not deteriorating due to copy-and-paste

practice.

It is worth to point out that almost always even a

relatively high CR value does not represent a remarkable

number of duplicated functions. Code duplication may be

considered relevant only among few major subsystems (e.g.

arch versus drivers). But even in this case, due to the

high number of functions in the subsystems, a CR value of

about 1–2% ends up in just 100–150 duplicated functions.
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