IS IT REALLY FUN? DETECTING LOW ENGAGEMENT EVENTS IN VIDEO GAMES

10/23/25

Zhiao Wei

How they solved?

Datapoints (40 players × 8 games × 3 minutes per game × 1 annotation per minute = 1,130 data points)

 \downarrow

 $Method \ 1: Affectiva \ (Business \ sentiment \ analysis \ tool \ based \ on \ 10 \ million \ user \ data. \ Testing \ 10 \ thresholds \ to \ find \ the \ optimal \ one. \)$

PAGE 3

Method 2: K+ (If neutral sentiment dominates → low engagement)

Method 3: FFBD (Facial Features-Based Detection)

 \downarrow

Results

How they solved?

Problem exsisting

video games requirement: They need to entertain the users and be fun to play.

Laugh * engagement

Key problem: video games are interactive

Fig. 1: Example of low-engagement

Problem exsisting

PAGE 2

Results - 1

TABLE IV: Comparison between FFBD and the other two approaches.

Tools	Precision	Recall	F1	AUC
FFBD bas	0.75	0.75	0.75	0.79
FFBD comp	0.73	0.73	0.73	0.79
Affectiva k=40	0.37	0.78	0.50	0.58
Affectiva k=90	0.35	0.99	0.52	0.58
K+	0.27	1.00	0.53	0.42

TABLE VI: RQ₂: Video Games rankings (direct and predicted), with the number of low engagement events for both the scenarios and the rank difference between the two.

#	Real (SR)		Predic	Prediction (SA)	
1	Amidar	87	Amidar	44	0
2	Qbert	68	Qbert	36	0
3	Space Invader	63	Space Invader	32	0
4	Lonely	46	Gopher	31	+1
5	Gopher	39	Snake	24	+2
5	Golf Assassin	33	Lonely	23	-2
7	Snake	30	Rayman	18	+1
8	Rayman	19	Golf Assassin	16	-2

- FFBD achieved 74.7% accuracy.
- FFBD can accurately identify the top 3 most boring games, and the overall ranking is highly consistent with players' subjective evaluations.

Results - 2 industry applicability

Fig. 2: An example of what we showed to participants. The bar below shows engagement in time (red \rightarrow low engagement).

- · It detected at least 5 low engagement events.
- red: potential low engagement events green: the non-low engagement events

WATERLOO FACULTY OF MATHEMATICS

Results - 2 PAGE 5

Possible Future Work / Rating

- Multimodal Data Integration. Incorporate additional data modalities to improve detection accuracy.
- 2. Expanding Dataset Scale. Collect data from a more diverse population.

Rating:(3/5): This is a high-quality empirical paper that pioneers real engagement detection with promising results (83.3% ranking correlation) and positive industry feedback, but is held back from top-tier status by low recall (41%), limited dataset scale (40 players, 8 games), and lack of causal insights into why engagement drops.

PAGE 7

UNIVERSITY OF FACULTY OF MATHEMATICS

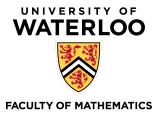
Positives

- · Practical Application for game designer.
- Post-Release Monitoring.
- Fine-Grained Real-Time Detection.

Negatives

- Low Recall Rate. The model only achieves 41% recall for the low engagement class.
- Cannot Distinguish External Factors. Like chat interaction, donations.
- Limited Information Dimensions. Maybe add streamer's audio commentary, in-game actions, and chat interactions.

Positives/Negatives PAGE 6


Discussion Points

- Is low engagement always a design flaw, or could it be player factors, external distractions, or intentional design (e.g., tension in horror games)?
- 2. Does "real engagement" measured with constant interruptions actually reflect uninterrupted gameplay engagement? Can a model trained on short, fragmented lab sessions generalize to long natural streaming sessions?
- 3. Should we prioritize recall (catching all issues, currently only 41%) or precision (reducing false alarms, currently 74.7%) for practical use? In industrial settings, which metric is more critical?

PAGE 8

Discussion Points

Thank you!

PAGE 9