
Summary Review: Are Prompt Engineering and TODO
Comments Friends or Foes? An Evaluation on GitHub Copilot

Christina Li
University of Waterloo

Waterloo, Canada
christina.li1@uwaterloo.ca

1 What is the Problem Being Solved?
This paper investigates whether including or modifying TODO
comments (a frequent type of self-admitted technical debt) helps
or hinders GitHub Copilot in generating high-quality code. Specif-
ically, it looks at whether unaltered TODOs cause the tool to re-
produce their issues, or if prompt engineering—such as removing
“TODO” and clarifying the instructions—improves Copilot’s output
and helps repay technical debt.

2 What is the New Idea They Are Proposing?
The authors propose leveraging TODO comments as potential
prompts for Copilot but highlight that unmodified TODO com-
ments may lead to code that repeats the same poor practices devel-
opers wanted to fix. They systematically compare three prompts
(just the docstring, docstring + TODO, and docstring + modified
TODO) to see which leads to code that best addresses the issues
described in the original comment. They also provide evidence that
simply removing the word “TODO” and presenting the rest of the
comment as a natural-language requirement can yield more helpful
code generations.

• TODO Comments sometimes Help, sometimes hurt.
• Modified TODOs could lead to more technical debt repay-

ment.
• Copilot can repay technical debt even without TODOs.
• Not all TODOs leads to useful codes.

3 Positive Points
• Dataset and Sample Quality: The authors build a large,

high-quality dataset of Python TODO comments from ac-
tive GitHub repositories and carefully filter them, ensuring
meaningful, context-rich samples. This thorough approach
bolsters the reliability of their findings.

• Actionable Insight:Their observation that removing “TODO”
from a comment can help Copilot produce more relevant so-
lutions is straightforward and beneficial for both researchers
and practitioners. This insight could be easily integrated
into existing workflows.

• Explores a Critical Issue in AI-Assisted Development:
Many AI-generated solutions contain hidden technical debt.
This research provides first insights into how AI handles
TODO-driven development.

4 Negative Points
• Single Programming Language Constraint: Focusing

only on Python code with docstrings may limit how far

these findings extend to other languages or settings where
documentation is less standard.

• Dataset Bias and Representativeness: The study only
considered well-documented code from relatively popular
repositories (≥ 24 stars). The exclusion of trivial or ambigu-
ous TODO notes (e.g. comments that just say “TODO” with
no details) also sidesteps what happens when the prompt
lacks clear guidance.

• Narrow Interpretation of Prompt Engineering: Prompt
engineering typically encompasses a broad range of tech-
niques (rephrasing instructions, providing examples, sys-
tem messages, etc.) to steer an LLM. However, this paper
only focus on TODO comments, which can be only a trivial
part of prompting issues.

• Experimental Design Limitations: The study’s method-
ology, while systematic, may not reflect real-world devel-
oper behaviour. In practice, developers might leave a TODO
in place (not necessarily at the top), or iteratively prompt
the AI rather than providing a fully formed docstring up-
front. The one-shot prompt per function might overlook
how developers interact with Copilot in multiple passes or
with partial code.

• Labelling Subjectivity and Bias: The manual labelling
process, though rigorous in achieving high inter-rater agree-
ment, still carries subjectivity.

5 Future Work
AI-Driven Refactoring for Technical Debt. One possible direction

is to create tools powered by artificial intelligence that can auto-
matically uncover and remediate instances of technical debt. Such
tools would analyze code-bases for structural or design weaknesses,
then either suggest or apply refactorings that prevent these short-
comings from accumulating over time.

Expanding Copilot’s Reach Across Languages. Another area to in-
vestigate involves studying how the insights from a Python-centric
context generalize to other programming languages with differ-
ent syntax, paradigms, and documentation standards. This broader
view would help determine whether the same strategies for prompt
engineering are effective on a wide range of development ecosys-
tems.

Assessing Long-TermMaintenance Impact. While short-term code
fixes are valuable, the real test lies in evaluating Copilot’s influence
on long-term maintenance. Future research could involve tracking
how Copilot-generated solutions evolve alongside a codebase over
multiple releases or iterations, shedding light on the tool’s sustained
impact on software quality and maintainability.



AI-Assisted Bug Fixing Beyond TODOs. Finally, it would be worth-
while to examine how Copilot and similar AI tools can assist with a
broader range of bug fixes that are not explicitly flagged by TODO
comments. This includes scenarios in which defects or improve-
ment opportunities arise from testing, bug reports, or external
issues rather than from self-admitted technical debt.

6 Rating
3/5: Despite the paper’s strong dataset quality, practical insight on
removing the word “TODO,” and its focus on an important issue
in AI-driven development, the narrow scope of evaluating only
Python repositories with docstrings and the somewhat constrained
method of prompt engineering limit broader applicability. Addi-
tional factors, such as potential dataset bias and the inherently
subjective nature of manual labeling, further reduce confidence in
the findings.

7 Discussion Points
• How do we balance writing for the AI vs. writing for fellow

humans?
• Should there be guidelines to ensure prompt engineering

techniques don’t inadvertently encourage bad documenta-
tion or design habits?

• Are we approaching a future where commenting becomes
a form of coding (prompt engineering) to steer AI, and is
that a positive trend for productivity and code quality?

8 In-Class Discussion
During the discussion of this paper in class, several students ex-
pressed skepticism about Copilot’s reliance on pattern matching.
One student pointed out that large language models (LLMs) often
copy code from examples containing TODO statements, sometimes
reproducing the same issues without truly “understanding” them.
Others argued that users should not expect Copilot to be entirely
consistent or relevant for every situation, as the tool can merely
mirror what it has seen in its training data. Another person noted
that to use Copilot effectively, developers should employ a con-
versational or supervised approach—consistently reviewing and
verifying generated code rather than blindly trusting it. In that vein,
one participant added they would not feed an entire repository
to Copilot and ask it to find bugs, as the process would be prone
to oversight. There was also a remark that prompt engineering
sometimes feels unscientific, with uncertain guidelines.

Questions also arose about the paper’s methodology. Some stu-
dents wondered why the authors did not go further in modifying or
rephrasing the TODO comments, suggesting that simple word re-
movals might not be enough to improve Copilot’s responses. They
pointed out that re-engineering prompts with more details, or sys-
tematically rewording the TODO statements, could potentially yield
better outcomes. On the topic of code quality, people highlighted
that the paper never clearly defined what “high-quality” code looks
like—there are many metrics for quality, and it’s unclear which
ones best measure whether Copilot helped fix or avoid technical
debt.

Another point of debate was the paper’s level of transparency.
Some noted that the prompts were not found in the authors’ pro-
vided package, leading to confusion about how the experiments
were conducted. This fuelled doubts over how the work achieved
acceptance in a top conference, with a few students indicating
they were unimpressed by the reported results. Lastly, there was a
conversation about the labelling process, where only two people
labeled the data. One participant thought that was too few for such
a subjective task, though the professor replied that more labellers
typically increase disagreements, and a smaller, more consistent
team can sometimes be more practical.


	1 What is the Problem Being Solved?
	2 What is the New Idea They Are Proposing?
	3 Positive Points
	4 Negative Points
	5 Future Work
	6 Rating
	7 Discussion Points
	8 In-Class Discussion

