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Primary Focus

▪ Whether the inclusion of a TODO comment influences the output of 

code generative tools, and whether this influence can resolve the 

TODO comment’s symptoms. 

▪ ✅ Determine the extent to which the symptoms associated with 

the TODO comments. 

▪ ❌ Technical Accuracy of the generated code
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Research Questions
• RQ1: Does the presence of TODO comments impact the quality of GitHub Copilot’s 

generated code? 

• RQ2: Can GitHub Copilot generations repay developer-written TODO comments?
RQ3: Can TODO comments be modified to enhance prompts which lead to 
generated code that repays the symptoms?
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New Ideas Proposed
(1) The first study evaluating the applicability of prompt engineering via TODO 
comment inclusion/modification to assist in automatic technical debt repayment.  
(2) Recommendable best practices for prompt engineering to produce code 
which avoids the symptoms of SATD being reproduced by code generative tools. 
(3) Insights on the limitations of code generative tools and inspirations for future 
research on code intelligence techniques applied towards SATD repayment.  
(4) A publicly available dataset consisting of 1,140 GitHub Copilot generations 
which future work can evaluate against to facilitate AI-assisted software 
maintenance.
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Methodology - Dataset & Prompt Engineering
Dataset: 

• Extracted 36,381 TODO comments from 102,424 Python 

repositories. 

• Iterative method filtered to 380 relevant samples 

using Boa infrastructure. 

Prompt Engineering Strategies: 

• DS: Uses DocString only. 

• DS-TD: Uses DocString + TODO comment. 

• DS-MTD: Uses DocString + modified TODO (removes 

"TODO" for clearer instruction). 

Generated Code Analysis: 

• 1,140 function bodies manually labeled (380 per 

prompt type). 
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Methodology - Dataset & Prompt Engineering
(1) Does the DS generation fix the 

symptoms of the concerned TODO comment? 

(2) Does the DS-TD generations contain the 

symptoms of the concerned TODO comment? 

(3) Does the DS-MTD comment fix the 

symptoms of the concerned TODO comment?
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Finding 1 - TODO Comments Sometimes Help, Sometimes Hurt

- Including TODO comments in the 
prompt (DS-TD) leads to 35.36% of 
generated code reproducing TD. 

- Many cases repeat poor coding 
practices instead of resolving them. 

- More structured TODOs help 
Copilot generate better solutions.
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Finding 2 - Modified TODOs Lead to More Technical Debt Repayment

- DS-MTD prompts (modified 
TODOs) improved TD repayment by 
10.53%. 

- Removing the word "TODO" and 
rephrasing the instruction clearly 
resulted in better AI-generated 
solutions. 

- Highlighting potential for 
preprocessing for TODO technical 
debt repayment.
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Finding 2 - Modified TODOs Lead to More Technical Debt Repayment
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Finding 3 - Copilot Can Repay TD Even Without TODOs

•  21.57% of generated code repaid TD even in DS prompts 
(without TODOs). 

•  Copilot learns patterns from training data and sometimes 
suggests better code even without being asked. 

•  AI-based code generation is improving, but still unreliable. 
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Finding 4 - Not All TODOs Lead to Useful Code

- Harmful TODOs include: 
• Ambiguous statements ("Fix later”) 
• Referencing unknown context ("Optimize this”) 
• Unclear questions ("Does this work?")
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Positive Points
1. Large-Scale Study with Strong Data Analysis 

◦ The study uses a large dataset from real-world repositories. 

◦ Manual evaluation of 1,140 function bodies adds reliability. 

2. Clear Practical Implications 

◦ Highlights how AI models interact with software maintenance issues. 

◦ Findings can guide prompt engineering and AI-assisted code review tools. 

3. Explores a Critical Issue in AI-Assisted Development 

◦ Many AI-generated solutions contain hidden technical debt. 

◦ This research provides first insights into how AI handles TODO-driven 

development.
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Negative Points
1. Limited to Python, Github Repo and TODO Comments 

◦ Study only evaluates Python repositories, so findings may not apply to other 

languages and other platforms. 

◦ Other types of AI-generated code quality issues were not considered. 

2. Experimental Design Limitations 

◦ The study’s methodology, while systematic, may not reflect real-world developer 

behaviour. 

◦ In practice, developers might leave a TODO in place (not necessarily at the top), or 

iteratively prompt the AI rather than providing a fully formed docstring upfront. 

◦ The one-shot prompt per function might overlook how developers interact with Copilot in 

multiple passes or with partial code.
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Negative Points Cont’d
▪ 3. Dataset Bias & Representativeness: 

▪ the study only considered well-documented code from relatively popular 
repositories (≥24 stars) 

▪ The exclusion of trivial or ambiguous TODO notes (e.g. comments that just say 
“TODO” with no details) also sidesteps what happens when the prompt lacks 
clear guidance. 

▪ 4. Narrow Interpretation of Prompt Engineering: 
▪ Prompt engineering typically encompasses a broad range of techniques 

(rephrasing instructions, providing examples, system messages, etc.) to steer an 
LLM. 

▪ 5. Labeling Subjectivity and Bias:  
▪ The manual labeling process, though rigorous in achieving high inter-rater 

agreement, still carries subjectivity.
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RATINGS
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Future Work

•Develop AI-driven refactoring tools to detect and fix TD 
automatically. 

•Analyze Copilot’s effectiveness across multiple programming 
languages. 

•Evaluate Copilot's performance on long-term software 
maintenance tasks. 

•Explore AI-assisted bug fixing beyond TODO comments.
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Discussion Points

•How do we balance writing for the AI vs. writing for fellow 

humans?  

•Should there be guidelines to ensure prompt engineering 

techniques don’t inadvertently encourage bad documentation 

or design habits? 

•Are we approaching a future where commenting becomes a 

form of coding (prompt engineering) to steer AI, and is that a 

positive trend for productivity and code quality?
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