ARE PROMPT ENGINEERING AND
TODO COMMENTS FRIENDS OR FOES?
AN EVALUATION ON GITHUB COPILOT

3/20/25

David OBrien Sumon Biswas Sayem Mohammad Imtiaz
Dept. of Computer Science School of Computer Science Dept. of Computer Science
Towa State University Carnegie Mellon University Towa State University
Ames, IA, USA Pittsburgh, PA, USA Ames, A, USA
i edu cmu.edu sayem@iastate.edu
Rabe Abdalkareem Emad Shihab Hridesh Rajan
Dept. of Computer Science Concordia University Dept. of Computer Science
Omar Al-Mukhtar University Montreal, QC, Canada Towa State University
Elbyda, JK, Libya emad.shihab@concordia.ca Ames, IA, USA
rabe.abdalkareem@omu.edu.ly hridesh@iastate.edu

Presenter: Christina Li

UNIVERSITY OF | oo oo
gg WATERLOO | matHematics

R
Research Questions

» RQ1: Does the presence of TODO comments impact the quality of GitHub Copilot’s

generated code?

+ RQ2: Can GitHub Copilot generations repay developer-written TODO comments?
RQ3: Can TODO comments be modified to enhance prompts which lead to

generated code that repays the symptoms?

S GitHub

C II t
UNIVERSITY OF | Lo oo

3 WATERLOO | mamemarics

Primary Focus

= Whether the inclusion of a TODO comment influences the output of
code generative tools, and whether this influence can resolve the
TODO comment’s symptoms.
. Determine the extent to which the symptoms associated with
the TODO comments.

= X Technical Accuracy of the generated code

UNIVERSITY OF | Lo oo

2 WATERLOO | mamemarics

R i
New Ideas Proposed

(1) The first study evaluating the applicability of prompt engineering via TODO
comment inclusion/modification to assist in automatic technical debt repayment.

(2) Recommendable best practices for prompt engineering to produce code
which avoids the symptoms of SATD being reproduced by code generative tools.

(3) Insights on the limitations of code generative tools and inspirations for future
research on code intelligence techniques applied towards SATD repayment.

(4) A publicly available dataset consisting of 1,140 GitHub Copilot generations
which future work can evaluate against to facilitate Al-assisted software
maintenance.

UNIVERSITY OF | Lo oo

4 WATERLOO | mamemarics

R i
Methodology - Dataset & Prompt Engineering

‘Table 2: Overview of our TODO comment preprocessing

Dataset:
. Extracted 36,381 TODO comments from 102,424 Python Froprovessing Step | TODOs Rematning
repositories. g:;‘;:; Native e
« Iterative method filtered to 380 relevant samples
using Boa infrastructure. Function Header Docstring T0DO Comment
Prompt Engineering Strategies: ‘ avidoum. num2) ‘ "M“ '““""M"“‘ ‘mm s
« DS: Uses DocString only.
« DS-TD: Uses DocString + TODO comment. . .

+ DS-MTD: Uses DocString + modified TODO (removes

Manual Gonoratn with Coplot

"TODOQ" for clearer instruction).

Generated Code Analysis:
* 1,140 function bodies manually labeled (380 per

prompt type).

05 Generation 05.T0 Generation DSMTD Genoration

5 % WATERLGO | Hnss

Finding 1 - TODO Comments Sometimes Help, Sometimes Hurt

- Including TODO comments in the
prompt (DS-TD) leads to 35.36% of
generated code reproducing TD. H e e & G bR R Dy G

IMREAD_GRAYSCALE)

s| # Save the density image in temp folder

s| cv2.imwrite('temp/density_image.png', density_img)
7| return rule_img, density_img

Load the rule image
2| rule_img = cv2.imread(rule_image_name, cv2.
IMREAD_GRAYSCALE)

- Many cases repeat poor coding
practices instead of resolving them.

rule_img = cv2.imread(rule_image_name, cv2
IMREAD_GRAYSCALE)

2| density_image = cv2.imread(density_image_name, cv2.

IMREAD_GRAYSCALE)

sl cv2.imwrite('temp/density_image.png', density_img)

s|return rule_img, density_img

- More structured TODOs help
Copilot generate better solutions.

Figure 2: DS Top and DSID mawn Copilot gencrations where DS-ID includes “TODO: Document” in the prompt.

UNIVERSITY OF | Lo oo

7 WATERLOO | mamemarics

Methodology - Dataset & Prompt Engineering

(1) Does the DS generation fix the

symptoms of the concerned TODO comment?

(2) Does the DS-TD generations contain the

symptoms of the concerned TODO comment?

(3) Does the DS-MTD comment fix the
symptoms of the concerned TODO comment?

Function Header

Doestring

TODO Comment

divide(num?1, num2) ‘

["Divides two numbers"

| ‘Tono check divide by

Manual Generation with Copiot

e

[

I

l

|def divide(num1, numa)
"Divides two numbers"™
retum num1 / num2

|def divide(num1, num2)
DO: check divide by zero
Divides two numbers™
return num1 / num2

ldef divide(num?, num2)

return num1 / num2

DS Generation

UNIVERSITY OF

FACULTY OF

WATERLOO | mamemarics

Finding 2 - Modified TODOs Lead to More Technical Debt Repayment

- DS-MTD prompts (modified
TODOs) improved TD repayment by
10.53%.

- Removing the word "TODO" and
rephrasing the instruction clearly
resulted in better Al-generated
solutions.

- Highlighting potential for
preprocessing for TODO technical
debt repayment.

Repaid by Repai

id by

DS Generation ~ DS-MTD Generation

Figure 6: Comparison of TODO comments repaid by DS and
DS-MTD generations.

UNIVERSITY OF

FACULTY OF

WATERLOO | mamemarics

Finding 2 - Modified TODOs Lead to More Technical Debt Repayment

Table 4: Helpful characteristics found in the 122 repayable SATD comments

Quality | Description How it can Affect Prompts Example(s) Percentage
Name
Concrete SATD comments may describe de- | Since code generation produces code according | todo: support sparse matrix!!, 65.57%
Action sired implementation or action. | to instructions, these SATD comments are well- | todo: check if the name does not
aligned with the goals of code generation. contain forbidden characters:
Contextual | SATD comments may include con- | SATDs which provide adequate context can guide | todo: fix code to fail with clear 32.79%
Info textual details such as where or | code generative tools to produce relevant code. | exception when filesize cannot be
‘when a change is to occur. obtained
Rationale | SATD comments may provide rea- | SATDs which detail the rationale of its repayment | todo: would it be more efficient 6.56%
son for the described repayment. | can provide non-functional requirements for its | using a dict or hash values
generation. instead
Future Con- | SATD comments may imply con- | The DS generations may make these future con- | todo: need tau possibly here 27.87%
sideration | siderations of changes. siderations without being specified to.

UNIVERSITY OF

FACULTY OF

WATERLOO | mamemarics

Finding 4 - Not All TODOs Lead to Useful Code

- Harmful TODOs include:
e Ambiguous statements ("Fix later”)
e Referencing unknown context ("Optimize this”)
¢ Unclear questions ("Does this work?")

Table 5: Harmful characteristics found in the 258 non-repaid SATD comments

Quality | Description How it can Affect Prompts Example(s) Percentage
Name
Symptom | SATD comments disclose poor | Inclusion of these comments in prompts leads | todo: untested for glms?, 14.34%
quality code instead of concrete | to generative tools producing poor-quality code | todo: too much slop permitted
actions. instead of solutions. here impossible, todo# too long?
Proximity | SATD comments refer to code | Without access to the original code, the relation- | todo: fix next line, 32.95%
nearby in the original body. ship between these comments and specific code | todo: clean this up,
segments is lost, hindering code generation’s per- | todo: complete this documentation
formance.
Question SATD comments question poor | When injected into prompts, they result in code | todo: remove redundant attributes 15.12%
qualities of code. with these questionable qualities instead of solu- | and fix the code that uses them?,
tions. todo: how to accommodate
regression?

|
Finding 3 - Copilot Can Repay TD Even Without TODOs

e 21.57% of generated code repaid TD even in DS prompts
(without TODOs).

¢ Copilot learns patterns from training data and sometimes
suggests better code even without being asked.

e Al-based code generation is improving, but still unreliable.

Table 3: Confusion matrix of DS and DS-TD results.

Does DS Repay?

Does DS-TD Reproduce? | No | Yes | Total

No 13| 53 66

Yes 285 | 29 314

Total 298 | 82| 380
1 WATERLOO | 5t

Positive Points
1. Large-Scale Study with Strong Data Analysis

o The study uses a large dataset from real-world repositories.
> Manual evaluation of 1,140 function bodies adds reliability.
2. Clear Practical Implications

> Highlights how AI models interact with software maintenance issues.
> Findings can guide prompt engineering and AI-assisted code review tools.
3. Explores a Critical Issue in AI-Assisted Development

> Many Al-generated solutions contain hidden technical debt.
o This research provides first insights into how AI handles TODO-driven

development.

UNIVERSITY OF | Lo oo

12 WATERLOO | mamemarics

*
Negative Points

1. Limited to Python, Github Repo and TODO Comments

> Study only evaluates Python repositories, so findings may not apply to other
languages and other platforms.
> Other types of AI-generated code quality issues were not considered.
2. Experimental Design Limitations

> The study’s methodology, while systematic, may not reflect real-world developer
behaviour.

o In practice, developers might leave a roro in place (not necessarily at the top), or
iteratively prompt the Al rather than providing a fully formed docstring upfront.

> The one-shot prompt per function might overlook how developers interact with Copilot in
multiple passes or with partial code.

UNIVERSITY OF

13 % WATERLOO | mamemarics

RATINGS

TR

N —
Negative Points Cont’'d

= 3. Dataset Bias & Representativeness:

= the study only considered well-documented code from relatively popular
repositories (=24 stars)

= The exclusion of trivial or ambiguous oo notes (e.g. comments that just say

“TODO” with no details) also sidesteps what happens when the prompt lacks
clear guidance.

= 4. Narrow Interpretation of Prompt Engineering:

= Prompt engineering typically encompasses a broad range of techniques

(rephrasing instructions, providing examples, system messages, etc.) to steer an
LLM.

= 5. Labeling Subjectivity and Bias:

= The manual labeling process, though rigorous in achieving high inter-rater
agreement, still carries subjectivity.

SR UNIVERSITY OF
14 WATERLOO WATHEMATICS

*
Future Work

e Develop AI-driven refactoring tools to detect and fix TD
automatically.

¢ Analyze Copilot’s effectiveness across multiple programming
languages.

e Evaluate Copilot's performance on long-term software
maintenance tasks.

e Explore Al-assisted bug fixing beyond TODO comments.

UNIVERSITY OF

16 % WATERLOO | mamemarics

Discussion Points

e How do we balance writing for the Al vs. writing for fellow
humans?

¢ Should there be guidelines to ensure prompt engineering
techniques don't inadvertently encourage bad documentation
or design habits?

e Are we approaching a future where commenting becomes a
form of coding (prompt engineering) to steer Al, and is that a
positive trend for productivity and code quality?

UNIVERSITY OF | Lo oo

17 @ WATERLOO | watHemarics

