
CS846 Week 9: Modern Code Review: A Case Study At Google

Mohammad Jaffer Iqbal

Problem Being Solved:

This paper highlights the gap in literature pertaining to a

focused and longitudinal perspective on modern code review

practice. A major study in 2013 focused on converging code

review practices across different contexts (open-sourced and

proprietary systems using async and tool-based processes)

and found them to converge on the following properties: (i)

the code review process being lightweight and quick, (ii) the

process requiring few reviewers (optimally 2) and the

purpose of the reviews being a group problem solving

activity. Amongst these works, there was a gap pertaining to

a focused study. To this end, the authors chose to investigate

the practice in Google to see if they are in accordance with

the converging properties. Google, being the tech giant that

it is, was chosen as it was one of the early adopters of code

review and performs plenty of reviews daily (with 25000

developers making 20000 source code changes daily).

New Idea:

To address the knowledge gap, the paper splits its objective

into 3 research questions: (i) What are the motivations for

code review at Google, (ii) What is the code review practice

at Google (in terms of form, size, frequency, etc) and (iii)

How do developers at Google perceive these code reviews?

To address RQ1, the authors conduct 12 extensive

interviews with developers at Google. These interviewees

were chosen using a Snowball sampling approach while

ensuring diversity to keep results generalizable. An open

coding approach followed by a separate closed coding

session to identify themes from the interviews. To address

RQ2, the authors perform a quantitative study spanning 9M

reviews on CRITIQUE (Google’s in house tool for code

reviews). Finally, to address RQ3, the authors include

insights from the interviews and use a survey (44

participants) asking their thoughts about a review on their

recent specific code changes (to mitigate recall bias).

Their results show some key differences in comparison to

the 2013 study. Specifically, the goal for performing code

review at Google was not to be a problem-solving exercise,

but to ensure code readability, maintainability and its

educational value. These goals also shifted in the case of

different positions – in the case of a higher-ranking reviewer

and a lower ranking code change author, the goal of the

review would primarily be educational value. The process

was also lightweight and flexible, while but was much

quicker and had smaller changes as compared to the results

in the 2013 study. Google preferred to have 1 reviewer for

most reviews (instead of 2 or more). The most interesting

insights pertained to communication issues leading to the

breakdown of the code review process. These were distance

(geographical and teams), tone (harsh/ non-constructive

criticism in reviews), power (dragging out reviews or

withholding approvals to intimidate), mismatched

expectations and lack of context. Overall, the study found

that 97% of the survey participants agreed with the

usefulness of the code review process.

Positive Points:

The paper is comprehensive in its investigation as it

combines its extensive qualitative insights (from interviews

and surveys) with quantitative insights (from the 9M

CRITIQUE logs). The authors clearly state the various

biases that may result from their methodology and take

measures to mitigate them. The paper also paints a complete

picture of the internals of code review at Google, how they

have a monolithic repository with owned directories and

how CRITIQUE and its automated test cases integrate with

its pipeline. The insights about the specific communication

issues leading to breakdowns are very realistic and practical.

Finally, the methodology for interviews (4 interviewers

containing one scribe and two Google employees followed

by open and closed coding to identify themes) is well

thought out.

Negative Points:

Despite having access to the extensive CRITIQUE dataset,

the paper provides no qualitative insights about the efficacy

(how many bugs it catches and overlooks) of the fast-paced

code review process at Google. The paper mentions how its

objective is to perform a “focused and longitudinal study”,

but the longitudinal aspect of their objective is left un-

addressed, with the survey and interview questions being

primarily about the current practices and the thought behind

them. Even the qualitative insights span 2 years, which do

not provide any information about the evolution of the code

review process at Google over a longer period (e.g. a

decade). Finally, the paper mentions how it uses its surveys

to counter the self-selection bias that results from voluntary

interviews – however, the survey itself is voluntary as well,

so this justification does not make sense.

Future Work:

One direction could be to solve the communication

challenges that result in the code review process breakdown.

Specifically, an LLM based solution could review code

changes to provide the author with insights about where to

provide context, while also reviewing the code reviews

themselves to make them more descriptive and constructive,

while removing harsh commentary. Furthermore, the

CRITIQUE dataset could be expanded to span 5 years, and

an analysis could be performed to correlate Google’s review

practices (review comment types, size, frequency) with

long-term code quality metrics (e.g. bugs overlooked,

maintainability).

Rating:

4/5 – the paper paints a thorough picture of the internals and

expectations of code review at Google.

Discussion Points:

(i) What are the pros and cons for using

Snowball sampling for interviews? Could we

make do with random sampling?

Snowball sampling is particularly applicable

in this senario as it allows you to first

interview the people who are more likely to

answer your interview questions. In the

context of the paper, the authors interview

one of the very early employees at Google to

understand the motivations for adopting

modern code review practices. It also helps to

find initial willing participants through

contacts first. However, there is a tradeoff

when it comes to using random sampling.

While such an approach garuntees better

generalizability, it is not the best approach

when trying to get your questions answered

that only specific personel can. For example,

a random sample could have sampled only

junior to mid-level developers who would

have lesser insights about the introduction of

the modern code review proces.

(ii) Can having questions on recent code changes

(in the survey) lead to a recency bias?

While the paper adds questions on recent code

changes in the survey to mitigate recall bias,

this strategy can introduce recency bias,

where the survey respondants’ answered may

be skewed by the usefulness of the recent

review. This too shows a tradeoff.

(iii) Could different insights be gained from

specialized code reviews

(security/performance teams)?

Yes, for example, the security team could

provide insights on a more rigorously

qualitative review with respect to best and

safe coding practices, while a performance

team could have more benchmark/scalability

centric code reviews. There quantity and size

could also vary across these specialized

teams. In critical cases, “super reviews” could

be helpful, ensuring stringent checks are

perform where required.

(iv) Is breaking down changes into smaller more

isolated changes (to facillitate quick

reviewing) always helpful?

While Google’s strategy helps in maintaining

a fast-paced review cycle, it also means that

larger code changes when split into smaller,

more isolated, changes can have the potential

of removing context thus requiring more back

and forth tallying with previously completed

reviews.

