
Summary Review: Too Noisy To Learn: Enhancing DataQuality
for Code Review Comment Generation

Xiangrui Ke
x3ke@uwaterloo.ca

University of Waterloo
Waterloo, Ontario, Canada

Review : Too Noisy To Learn: Enhancing Data
Quality for Code Review Comment Generation
1 Summary
This work presents a groundbreaking exploration into improv-
ing the data quality of automated code review systems through
large language models (LLMs). Recognizing that existing code re-
view datasets are often contaminated with noisy comments which
is vague, or non-actionable, and current cleaning methods using
heuristics and ML approaches still incur noisy and lead models to
generate low-quality review comments because it lacks a complex
semantic understanding of both code changes and natural language
comments. The authors point out three key research questions in
LLM-driven code review comment generation.

By answering these questions, authors propose semantic detect
and cleaning approach to distinguish valid review comments from
noisy ones. Their empirical evaluation, conducted on the widely
used CodeReviewer benchmark, demonstrates that LLMs such as
GPT-3.5 and Llama 3 can classify the valid comments with high
precision. Furthermore, fine-tuning existing code review models on
the cleaned datasets leads to substantial generation performance
improvement — both in currency and quality in several different
metrics.

This work not only validates the feasibility of leveraging LLMs
for semantic data labeling in software engineering field but also
underscores a critical insight: quality outweigh quantity in terms
of data when enhancing model performance. The work represents
an advanced step toward LLM-assisted software engineering, offer-
ing both methodological innovation and practical implications for
building reliable, high-utility automated code review systems.

2 Strength
• It is the first study to employ large language models (LLMs)

for semantic cleaning of code review datasets, addressing
a long-standing challenge of noise in code review dataset.
This contribution is both novel and practically significant,
as it introduces a new research direction for enhancing
dataset quality in software engineering.

• This work conduct a comprehensive empirical evaluation
involving multiple LLMs, diverse prompt designs, and mul-
tiple evaluation metrics including precision, recall, BLEU-4,
informativeness, and relevance. This experimentation pro-
vides strong empirical grounding for their claims.

• The study delivers insightful results demonstrating that
improved data quality can substantially enhance model per-
formance, even when the dataset size is reduced — quality
over quantity.

• This paper pioneeringly investigates the feasibility of using
LLMs as data curators in software engineering, extending
their applicability beyond traditional text generation tasks
to the realm of dataset refinement and quality assurance.

3 Weakness
• This work relies on a human-labeled subset of valid and

noisy comments to guide and evaluate the LLM-based clas-
sification. This manual annotation process, although neces-
sary, may introduce human bias and subjectivity in defining
what constitutes a valid review comment, potentially in-
fluencing both the model evaluation and the downstream
cleaning quality.

• Despite leveraging LLMs for semantic labeling, the overall
framework still requires a non-trivial amount of human
effort, includingmanual labeling for training and evaluation
as well as prompt tuning and qualitative analysis. This
limits the scalability and full automation potential of the
proposed approach.

• The experimental scope is confined to a single benchmark
dataset–CodeReviewer. The generalizability of the find-
ings to other datasets, programming languages, or indus-
trial code review environments remains to be validated. A
broader empirical evaluation would strengthen the external
validity of the conclusions.

4 Future Work
Future research can further extend and strengthen this study in
several directions. First, this paper focuses on assessing the validity
of review comments, future work could also evaluate their techni-
cal correctness and usefulness, thereby providing a more holistic
assessment of comment quality. Incorporating correctness-oriented
metrics would help ensure that the generated comments are not
only actionable but also technically sound.

Second, the development pipeline could be enhanced by integrat-
ing more LLM-driven components, such as automated labeling re-
finement, dynamic prompt optimization, or self-consistency checks,
to further reduce human involvement and improve scalability.

Third, it would be valuable to explore domain generalization,
testing the proposed cleaning and generation approaches across di-
verse datasets, programming languages, and industrial code review
environments. Such extensions would help validate the robust-
ness and general applicability of the LLM-based semantic cleaning
framework.

5 Discussion on Class
We have started several discussion on the class.

https://orcid.org/1234-5678-9012


Xiangrui Ke

• One classmate brought up that this work didn’t implement
the model selection of LLMs, or even considered it as one
of the methodological flaws of this paper. He pointed out
that LLMs selected by this paper are: GPT-3.5, CodeLlama,
and Llama3. And all of these three are decoder-only LLMs.
Normally, LLMs with an encoder-only architecture are con-
sidered better at understanding code, and decoder-only
architectures are considered better at generating code. The
task for this paper is to learn the code and review comments,
and decide whether they are valid or not. The classmate sug-
gests that at least they should include some encoder-only
and encoder-decoder models for comparison.
While I responded to the student’s question and explained
that this paper mainly focus on the investigation on the
feasibility of LLM-assist code review, more likely serves as
a lower bound to the problem, in the sense that if randomly
selectedmodels couldworkwell, more strengthenedmodels
are more likely to work better than the baseline.

• One classmate asked why it is important to only have clean
comments, and why any comments asking for clarifications
are not good comments. Code review comments that ask
for more clarification may indicate that the code snippet
is not readable or that the documentation is missing. It’s
an indicator that something is wrong and cannot be simply
removed.
One classmate was skeptical about how they break down
the valid comments and invalid comments. Many people
second it, and another person pointed out that sometimes
vague comments make sense to human beings, in the sense

that they know the context of the code snippet, but they do
not make sense to LLMs.
I totally agreed with that we could act more smartly to deal
with these datasets. On the one hand, valid ones will always
help improve the model’s performance, and on the other
hand, we could refine the vague ones to make them clear
enough for LLMs to learn, instead of simply getting rid of
them so as to avoid leaving out important information.

• One student linked the paper to her current project and
highlighted that LLMs are surprisingly poor at identifying
sarcasm. Deciding whether or not one comment is valid
is manually done in this paper. Though in most cases, we
normally don’t have time to do so much manual validation,
it’s definitely not the best practice to just throw that data
away.

• Professor concluded that we could leave the nuance and
sarcasm identification work for future directions, and right
now, we should focus on letting it walk before running.
People should be more tolerant of it and focus on what it
can do, instead of judging it at the moment.

6 Rating
4/5 Overall, this study presents an advanced LLM-assisted explo-
ration in software engineering, demonstrating that LLM-assisted
data cleaning can significantly improve the quality and performance
of automated code review models. The work delivers a key insight
for future research — data quality matters more than the quantity —
highlighting that cleaned datasets can achieve better, more reliable
outcomes.


	1 Summary
	2 Strength
	3 Weakness
	4 Future Work
	5 Discussion on Class
	6 Rating

