
Summary Review: Investigating Code Review Quality: Do People
and Participation Matter?

Eimaan Saqib
e2saqib@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

ACM Reference Format:
Eimaan Saqib. 2018. Summary Review: Investigating Code Review Qual-
ity: Do People and Participation Matter?. In Proceedings of Make sure to
enter the correct conference title from your rights confirmation email (Con-
ference acronym ’XX). ACM, New York, NY, USA, 2 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 PAPER SUMMARY
The paper code review quality in terms in the Mozilla codebase.
Code review is a critical quality assurance (QA) practice in software
development. It involves peers inspecting code changes (patches)
before they’re merged into the main codebase. But sometimes, bugs
still slip through.

Mozilla uses a two-tiered review process for submitted patches.
First, a review is performed by the owner of the module in question.
If the patch requires integration or modifies the core Mozilla in-
frastructure, then it is reviewed by a super reviewer. Every patch is
reviewed using the Bugzilla issue-tracking system. If it is approved,
it is committed to the main codebase.

The authors first extracted 44k+ commits from mozilla-central.
They collected different metrics for each commit including the
commit size, review flag, and the commit message. Then they used
pattern matching to extract bug IDs from the commit messages that
were fixing some bug and eliminated the ones without review tags.
They used the bug ID to get differentmetrics fromBugzilla including
when the bug was submitted, a list of proposed patches, review
flags of the patches, etc. They were unable to extract information
for some bugs that required special permissions for access. They
linked each commit to its corresponding patch and review-related
information. Then they used the SZZ algorithm to build a list of
revisions that are candidates for bug-inducing changes. They also
extracted some information to serve as technical, personal, and
participation factors in code reviews. They created an MLR model
with these explanatory variables that predicts whether or not a bug
is detected in a review.

Findings indicated that more than half the reviews are buggy.
Longer review queue, larger size of the commit and number of files
modified, more reviewer comments, and more people on the CC list
all lead to lower quality reviews that are buggy. On the other hand,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

super reviews, greater reviewer experience, number of commenting
developers, and comments per developer all lead to better quality
and less buggy reviews.

2 POSITIVE POINTS
(1) The SZZ algorithm is a widely accepted method for identify-

ing bug-inducing changes. While imperfect, its application
was transparent, and the authors acknowledged its 9% false-
positive rate, manually validating a subset of results.

(2) Controlling for technical factors (e.g., patch size) isolated the
impact of human/social variables.

(3) Variables with high VIF scores (e.g., overlapping metrics
like "number of comments" vs. "number of commenting de-
velopers") were systematically removed, improving model
reliability.

(4) The authors openly acknowledged threats (e.g., Bugzilla’s
ambiguous CC list purpose, SZZ’s false positives) and miti-
gated them where possible (e.g., manual validation of bug
links).

3 NEGATIVE POINTS
(1) SZZ links bug-fixing commits to earlier changes, butMozilla’s

long history means some bug-inducing commits might pre-
date the study window (2013–2014), leading to undercount-
ing.

(2) The study focused solely on Mozilla, an open-source project
with unique practices (e.g., super reviews). Findings may not
apply to closed-source projects or smaller teams with less
formal processes.

(3) 188 bugs were excluded due to restricted access, introducing
potential selection bias (e.g., security-critical bugs might be
overrepresented in restricted reports)

(4) Reviewer/writer experience was measured as total reviews
or patches submitted, which oversimplifies expertise. A de-
veloper with 100 trivial patch reviews may not have the same
expertise as one with 50 complex ones.

(5) Adjusted R2 values (12.8–17.3%) indicate the models explain
only a fraction of variance. Unmeasured factors—like code
complexity, reviewer motivation, or time pressure—likely
play significant roles.

(6) The counterintuitive link between reviewer comments and
bugs (more comments → more bugs) wasn’t fully explained.
Is this due to contentious reviews, unclear feedback, or poorly
written patches? The study flags this but leaves it unresolved.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Eimaan Saqib

4 FUTUREWORK
(1) Conduct interviews/surveys with Mozilla developers to un-

derstand why reviewers miss bugs. Do time pressures or
unclear guidelines contribute? How do reviewers prioritize
depth vs. speed?

(2) Explore the social dynamics behind metrics like "number
of reviewer comments": Are contentious reviews or unclear
feedback causing more bugs?

(3) Replicate the study in closed-source projects (e.g., Microsoft,
Google) to compare with Mozilla’s open-source dynamics,
and smaller teams/startups to assess scalability of findings.

(4) Investigate whether AI tools (e.g., ChatGPT for code analysis,
static analyzers) reduce human oversight gaps. Do they miss
bugs that humans catch, or vice versa?

(5) Study how time-of-day, deadlines, or sprint cycles impact
review quality.

5 RATING
4/5

The study advances understanding of human/social factors in
code review but leaves much variance unexplained, urging future
work to explore additional drivers of review quality.

6 DISCUSSION POINTS
(1) Is a 54% defect rate an inevitable trade-off for rapid devel-

opment, or a sign of systemic failure? Should Mozilla slow
down reviews to catchmore bugs, risking slower innovation?
What if competitors (e.g., Chrome) move faster? If a missed
bug causes a data breach in Firefox, who bears responsibility:
the reviewer, the developer, or Mozilla’s process? Should
"acceptable" bug rates depend on the software’s domain?
(E.g., a video game vs. medical device software?)
• Finding bugs is hard and complicated. No matter what you
do, you need to expect bugs will get through. But on the
other hand, you can iterate faster on the bug you found
if the review process is faster. There is a trade-off but it’s
worth it.

• Is 54% a bad or good number? There is always a snowball
effect. Once a review is performed where the bug was
missed, you typically don’t review that patch again very
thoroughly.

• The SZZ algorithm only looks at removed lines, not added
lines. But added lines need to be considered as well to have
a complete picture of bug-inducing changes.

(2) The study found that adding more people to a bug’s CC list
increased missed bugs, while active commenting reduced
them. Does CC’ing large groups create a "diffusion of respon-
sibility," where everyone assumes someone else will review?
How can teams encourage meaningful participation with-
out overwhelming developers with notifications? Is ‘more
participation’ always better, or does it risk creating noise
without value?
• A downside of this paper is the overall lack of qualitative
insights. It would be useful if researchers talked to some
developers to gain these insights.

(3) Mozilla uses "super reviews" by 30 experts for critical changes,
which reduced bugs in the study. Can super reviews work
in startups or smaller teams without dedicated experts? If it
only explains a small percentage of bugs, should teams focus
on it or hunt for bigger factors (e.g., code complexity)?
• For smaller teams, you need experts to work on devel-
oping the projects. Super review is not sustainable and
affordable. It would be beneficial for smaller teams to have
workshops or seminars to let experts share their thoughts
and guidance with other reviewers. Limiting the number
of people who work on the critical development tasks is
not viable.

• A possible solution could be one expert in a small team
acting as a super reviewer, and the rest are developers.
The expert spends three days developing, and two days
on super reviews.

• Eventually you need something like super reviews for
large patches, and also people reviewing things if it re-
quires integration among different modules.


	1 Paper Summary
	2 Positive Points
	3 Negative Points
	4 Future Work
	5 Rating
	6 Discussion Points

