
INVESTIGATING CODE REVIEW QUALITY: DO PEOPLE 
AND PARTICIPATION MATTER?
OLEKSII KONONENKO, OLGA BAYSAL, LATIFA GUERROUJ, YAXIN CAO, AND MICHAEL W. GODFREY

BACKGROUND
CODE REVIEW

¡ Code Review:

¡ Critical quality assurance practice

¡ Catch defects, ensure design consistency, share knowledge

¡ Mozilla:

¡ Large mature open-source project

¡ Strict code review policies

¡ Higher contributor diversity

¡ Prior work focused on code review coverage and time, not quality

STUDY SETUP

¡ Timeframe: January 2013 – January 2014

¡ Modules analyzed: Mozilla-all (entire codebase), plus three largest modules: Core, Firefox, Firefox for Android

¡ Data Sources:

¡ Version Control (Mercurial): 44,595 commits initially, filtered to 27,270 after preprocessing

¡ Bugzilla: Linked bug reports, patches, and review history

Version 
Control 
System

Extract 
Commits 
and their 
Metrics

METHODOLOGY

• Extracted 44,594 
commits

• Collected information: 
identifier, name/email, 
date added, description, 
size

• To calculate size, 
exclude changes to 
binary files



Version 
Control 
System

Extract 
Commits 
and their 
Metrics

Assign 
Bug IDs

METHODOLOGY

• Detect changes that fix 
bugs

• Extract bug ID from 
commit summary using 
regex

• Eliminate matches with 
unreviewed commits

• Assigned bug IDs to 
35,668 commits

Version 
Control 
System

Extract 
Commits 
and their 
Metrics

Assign 
Bug IDs

Get Bug 
Metrics

Bugzilla

METHODOLOGY

• Metrics: date of 
submission, 
name/email, severity 
and priority, module 
affected, proposed 
patches

• Patches: author, 
submission date, review 
flags

• Review flags: date and 
time, email

Version 
Control 
System

Extract 
Commits 
and their 
Metrics

Assign 
Bug IDs

Get Bug 
Metrics

Get Review 
Related 

Information
Bugzilla

METHODOLOGY

• Linked each commit to 
patch and review 
related information

• Matched with newest 
patch that had a 
positive review and 
review was granted 
before commit time

Version 
Control 
System

Extract 
Commits 
and their 
Metrics

Assign 
Bug IDs

Get Bug 
Metrics

Get Review 
Related 

Information

Find Commits 
that Missed 
Bugs (SZZ)

Link 
Commits 

and 
Patches

Bugzilla

Final 
Dataset

METHODOLOGY

• Execute difference 
between bug fix commit 
and parent

• Consider only removed 
lines

• Get identifier of revision 
that modified bug-
inducing lines

• 9% false positives



DETERMINING 
EXPLANATORY 
FACTORS

MODEL CONSTRUCTION AND ANALYSIS

¡ Used an MLR model

¡ Transformed categorical variables

¡ Identified collinearity

¡ Evaluation using R-squared

DO CODE REVIEWERS MISS MANY BUGS?

DO PERSONAL 
FACTORS 
AFFECT THE 
QUALITY OF 
CODE REVIEW?



DOES 
PARTICIPATION 
IN CODE 
REVIEW 
INFLUENCE ITS 
QUALITY?

POSITIVE POINTS

¡ The SZZ algorithm is a widely accepted method for identifying bug-inducing changes. While imperfect, its 
application was transparent, and the authors acknowledged its 9% false-positive rate, manually validating a subset 
of results.

¡ Multiple Linear Regression (MLR): The use of MLR collinearity checks (VIF < 5) strengthened the statistical rigor. 
Controlling for technical factors (e.g., patch size) isolated the impact of human/social variables.

¡ Variables with high VIF scores (e.g., overlapping metrics like "number of comments" vs. "number of commenting 
developers") were systematically removed, improving model reliability.

¡ The authors openly acknowledged threats (e.g., Bugzilla’s ambiguous CC list purpose, SZZ’s false positives) and 
mitigated them where possible (e.g., manual validation of bug links).

NEGATIVE POINTS

¡ SZZ links bug-fixing commits to earlier changes, but Mozilla’s long history means some bug-inducing commits might 
predate the study window (2013–2014), leading to undercounting.

¡ The study focused solely on Mozilla, an open-source project with unique practices (e.g., super reviews). Findings may not 
apply to closed-source projects or smaller teams with less formal processes.

¡ 188 bugs were excluded due to restricted access, introducing potential selection bias (e.g., security-critical bugs might be 
overrepresented in restricted reports)

¡ Reviewer/writer experience was measured as total reviews/patches submitted, which oversimplifies expertise. A developer 
with 100 trivial patch reviews may not have the same expertise as one with 50 complex ones.

¡ Adjusted R² values (12.8–17.3%) indicate the models explain only a fraction of variance. Unmeasured factors—like code 
complexity, reviewer motivation, or time pressure—likely play significant roles.

¡ The counterintuitive link between reviewer comments and bugs (more comments → more bugs) wasn’t fully explained. Is 
this due to contentious reviews, unclear feedback, or poorly written patches? The study flags this but leaves it unresolved.

FUTURE WORK

¡ Conduct interviews/surveys with Mozilla developers to understand why reviewers miss bugs. Do time pressures or 
unclear guidelines contribute? How do reviewers prioritize depth vs. speed?

¡ Explore the social dynamics behind metrics like "number of reviewer comments": Are contentious reviews or 
unclear feedback causing more bugs?

¡ Replicate the study in closed-source projects (e.g., Microsoft, Google) to compare with Mozilla’s open-source 
dynamics, and smaller teams/startups to assess scalability of findings.

¡ Investigate whether AI tools (e.g., ChatGPT for code analysis, static analyzers) reduce human oversight gaps. Do 
they miss bugs that humans catch, or vice versa?

¡ Study how time-of-day, deadlines, or sprint cycles impact review quality.



RATING

4/5

DISCUSSION POINTS

¡ Is a 54% defect rate an inevitable trade-off for rapid development, or a sign of systemic failure? Should Mozilla slow 
down reviews to catch more bugs, risking slower innovation? What if competitors (e.g., Chrome) move faster? If a 
missed bug causes a data breach in Firefox, who bears responsibility: the reviewer, the developer, or Mozilla’s 
process? Should "acceptable" bug rates depend on the software’s domain? (E.g., a video game vs. medical device 
software?)

¡ The study found that adding more people to a bug’s CC list increasedmissed bugs, while active commenting 
reduced them. Does CC’ing large groups create a "diffusion of responsibility," where everyone assumes someone 
else will review? How can teams encouragemeaningful participation without overwhelming developers with 
notifications? Is ‘more participation’ always better, or does it risk creating noise without value?

¡ Mozilla uses "super reviews" by 30 experts for critical changes, which reduced bugs in the study. Can super reviews 
work in startups or smaller teams without dedicated experts? If it only explains a small percentage of bugs, should 
teams focus on it or hunt for bigger factors (e.g., code complexity)?


