CS846 Week 4 Reviews: Modern Code Review: A Case Study at
Google

Youssef Souati

1 Problem Being Solved

The paper tackles a simple question that most teams still argue
about. What does modern code review really look like when it
works at scale, and what parts of the process actually matter. The
authors study Google’s review culture, data and tooling to clarify
why Google reviews code, how reviews actually run in practice,
and how developers feel about the process.

2 The Authors Proposed Idea

This is not a new algorithm or a rigid checklist. The fresh idea is a
detailed, data backed picture of modern code review as practiced
at Google, built from millions of reviews combined with inter-
views and a targeted survey. The study reframes code review as
a lightweight, high trust workflow that is tightly integrated with
a specialized tool named Critique and supported by clear cultural
rules. At Google every change goes through review, yet the process
remains fast because most changes are small, usually one reviewer
is enough, and the tool streamlines the steps from creating a change
to getting LGTM.

A key conceptual shift is the motivation for review. While find-
ing bugs is welcome, Google emphasizes code understandability
and knowledge sharing as the primary reasons to review. That
makes readability and shared ownership first class goals, not side
effects. Reviewers are expected to keep code clear and aligned with
team conventions, and Critique encodes this with ownership and
readability rules so the right person can approve quickly.

3 Positive points

Culture + process + tooling as one coherent system. The paper
shows how readability and ownership ideals become explicit rules
and then become Critique features like reviewer suggestion and
inline analyzers, making the workflow fast but accountable.

Practical details teams can copy. Pre-commit gates, analyzer feed-
back with “Please fix” and “Not useful,” and lightweight iteration
policies are described clearly enough to inform policy and tool
decisions elsewhere.

When they set out to measure review time, they didn’t take
the easy self-report route. They instrumented Critique, grouped
events into review sessions with a 10 minute inactivity gap over five
weeks, and got an objective estimate of about 3.2 hours per week
on average and 2.6 median (Low compared to the 6.4 self-reported
for OSS projects).

4 Negative points

Unclear interview geography. The paper does not state where inter-

viewees were located. Experiences can vary by region, especially

socially, so important breakdowns in other offices may be missed.
Limited value from the survey. After the interviews, a small tar-

geted survey adds little. It would have been more useful with people

the team could not meet in person, especially in other locations.

The authors say the survey adds confidence in the coded themes,
but the options were those themes, which likely biased responses.

Satisfaction measured at the wrong level. Reporting that 97% are
satisfied with “code review” is unsurprising. Satisfaction should be
measured for the process itself, such as turnaround time, clarity of
feedback, tool support, and friction points.

5 Future work

If I were to extend this work, I would run a similar study that
follows new developers from day one to observe how the cold start
shapes the paper’s findings, ease their ramp-up with smoother
integration by having them co-review changes alongside owners to
build directory-level understanding before graduating to authoring
small changes, add guardrails that flag large first diffs and suggest
splitting them into smaller units, and measure impact with concrete
metrics such as time to first response, number of iterations, new-dev
satisfaction, and time to first owner-level approval.

6 Rating

I would give this paper a 4 out of 5. It offers a clear, data-backed
playbook for modern code review that most teams can adopt today.

7 Discussion Points

Is Google’s one-approver norm (less than other companies) mainly
viable because ownership and readability create clear accountability,
and would it still hold in teams without those guardrails or in
tightly coupled code? In class we noted that multiple reviewers
can add more insight, especially when the primary reviewer is also
the file owner which could introduce bias, so another party can
help balance that. More reviewers also increase review time, while
strong ownership and readability may already reduce bias because
owners have studied the code before the commit. Code review can
be cumbersome, so one reviewer can be acceptable when there is
confidence in ownership and code quality.

The paper suggests very large diffs often include mass deletes but
they did not mention why; why should these be handled differently?
We said size hurts readability, so reviewers struggle to give thorough
feedback. Breaking work into smaller changes first improves clarity
and review quality, and large deletions may deserve a dedicated
workflow.

Would an employee’s geographic location and time zone mean-
ingfully affect their satisfaction? Yes, location matters. In person
collaboration feels different from online collaboration. Asynchro-
nous work across time zones can slow feedback cycles and may
affect satisfaction. How an organization manages for outcomes
versus synchronous interaction also shapes the experience.

Could LLMs automate enough to allow guarded auto-merge for
narrow, well-tested changes, or will human reviewers always be
required for design, security, and accountability? Class discussion
agreed that LLMs are not accountable. They can assist but should



Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

not replace humans. Human review remains necessary for design
judgment, security assessment, and final accountability, even if
automation helps on low risk changes.

How does focusing reviews on bug finding relate to ownership?
We discussed that stronger ownership can address a bug-centric
mindset, because owners feel responsible for quality beyond just
finding defects.

What aspects of culture support effective reviews? We high-
lighted a culture that values writing good code, owning code, and

Youssef Souati

writing for others, which increases quality and makes reviewers
more engaged. High readability removes excuses for weak feedback.
Assigning reviewers based on workload removes excuses for delays.
A comprehensive coding standard, specific to Google, reinforces
consistent expectations.

What is the education value of code review? Code review is part
of developer training. Co-review helps newcomers learn and adapt.
Similar practices could be taught in academic courses that cover
good review habits, mirroring Google’s internal training.



	1 Problem Being Solved
	2 The Authors Proposed Idea
	3 Positive points
	4 Negative points
	5 Future work
	6 Rating
	7 Discussion Points

