
Modern Code Review: A Case Study at
Google

Presented by

Youssef Souati

10/8/25

Paper background
Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko at Google; Alberto
Bacchelli at the University of Zurich.

Published at the International Conference on Software Engineering, Software
Engineering in Practice track, Gothenburg, Sweden, May 27 to June 3, 2018.

Exploratory study using 12 interviews, a survey with 44 respondents, and logs of
about nine million reviewed changes to examine motivations, practice, and
developer experience at Google.

PAGE 2

What is modern code review
Before this, classic code inspections were formal, scheduled, and synchronous, with
planning, preparation, an in-person inspection meeting, rework, and follow-up.

Email based reviews in open source were asynchronous but unstructured.

Modern code review is informal and tool-based. It is asynchronous. It focuses on
small diffs tied to a change. Discussion happens as line-level threaded comments
and one or more approvers sign off in the tool.

PAGE 3

Why Google
Google has required code review since early in its history and refined it for over a
decade. Most development happens in a single monorepo with a uniform review
workflow in Critique.

The scale is huge. About 20,000 code changes each workday. More than 25,000
authors and reviewers. Dozens of offices around the world.

PAGE 4

Methodology
§ Mixed-methods design using three lenses.

§ Semi-structured interviews

§ Critique tool logs

§ A short targeted survey on a fresh review

§ Direct comparison to Rigby and Bird’s convergent practices. Quantitative analysis
centers on flow, speed and frequency, change size, and number of reviewers to
check whether Google shows the same patterns.

PAGE 5

Research Questions
§ RQ1: motivations for review at Google.

§ RQ2: how the process runs in practice at scale.

§ RQ3: how developers perceive review and where it breaks.

§ They complement Rigby and Bird’s cross-project work by doing a focused, deep case study inside one company.

§ Rigby and Bird had identified five convergent practices.
§ Lightweight flexible process. (CP1)

§ Early, quick, frequent reviews. (CP2)

§ Small changes. (CP3)

§ Two reviewers often optimal. (CP4)

§ Review as group problem solving. (CP5)

PAGE 6

Research Method: Interviews

PAGE 7

Research Method: Critique tool logs
§ Scope: Critique logs; only changes with ≥1 approver (here, “reviewer” = approver).

§ Scale & time: Jan 2014–Jul 2016; ~9M changes, ~13M comments, 25k+ devs;
~20k changes/day.

§ Clean + metrics: Main codebase; exclude uncommitted/zero-diff; filter bots;
measure latency (first response/approval), size (lines/files), reviewers/comments,
iterations.

PAGE 8

Research Method: Survey
§ Targeting: 98 engineers, each about one just-reviewed change to cut recall bias.

§ Instrument: 3 Likert value questions, 1 effects multiple-choice with “other,” plus 1
open-ended.

§ Responses: 44 valid replies (45% response rate).

§ Role: Triangulate interview themes and capture immediate perceptions.

PAGE 9

Results: RQ1
§ Origin: enforce clarity; code should teach

future engineers; avoid single-owner
knowledge

§ Today (finding 1): Review focuses on
readability and maintainability; defect
finding is welcomed but not the only focus.

§ Philosophy: education + shared ownership as
the core purpose

§ (finding 2) Expectations for a review depend on
the work relationship between author and
reviewers.

PAGE 10

Results: RQ2- How review runs

(finding 3) Process is lightweight and flexible; ownership and readability are
explicit; tool includes reviewer recommendation and code analysis.

PAGE 11

Results: RQ2- Key metrics at scale
§ Typical size: median ~24 lines; ~90% of changes touch <10 files

§ Speed: first response often <1 hour for small changes; median time-to-approval
<4 hours

§ Participation: median 1 approver; <25% have >1

§ Iteration: >80% of reviews finish in a single address-and-resend round

(finding 4) Reviews are markedly faster with smaller changes than prior studies; one
reviewer is often sufficient vs. two elsewhere.

PAGE 12

Results: RQ3- Breakdowns developers hit
§ Distance: geo and org distance cause delays and misunderstandings.

§ Social interactions: tone issues and power plays can sour reviews; negative-tone
comments are less useful.

§ Tool customization: team-specific policies not always supported; new option
added to require all reviewers to sign off.

(finding 5) Despite years of refinement, code review still faces breakdowns rooted in
complex interactions.

PAGE 13

Results: RQ3- Satisfaction and time

(finding 5) Developers still consider review highly valuable and spend about three
hours per week reviewing.

PAGE 14

Positive points
§ Culture + process + tooling as one coherent system. The paper shows how

readability and ownership ideals become explicit rules and then become Critique
features like reviewer suggestion and inline analyzers, making the workflow fast
but accountable.

§ Practical details teams can copy. Pre-commit gates, analyzer feedback with “Please
fix” and “Not useful,” and lightweight iteration policies are described clearly
enough to inform policy and tool decisions elsewhere.

§ When they set out to measure review time, they didn’t take the easy self-report
route. They instrumented Critique, grouped events into review sessions with a 10
minute inactivity gap over five weeks, and got an objective estimate of about 3.2
hours per week on average and 2.6 median (Low compared to the 6.4 self-reported
for OSS projects).

PAGE 15

Negative points
§ Unclear interview geography. The paper does not state where interviewees were

located. Experiences can vary by region, especially socially, so important
breakdowns in other offices may be missed.

§ Limited value from the survey. After the interviews, a small targeted survey adds
little. It would have been more useful with people the team could not meet in
person, especially in other locations. The authors say the survey adds confidence
in the coded themes, but the options were those themes, which likely biased
responses.

§ Satisfaction measured at the wrong level. Reporting that 97% are satisfied with
“code review” is unsurprising. Satisfaction should be measured for the process
itself, such as turnaround time, clarity of feedback, tool support, and friction
points.

PAGE 16

Future work
§ Run a focused study: follow new developers from day one to see how the cold start

affects the findings of this paper.

§ Smoother integration: start with co-reviewing changes alongside owners to build
understanding and ownership of specific directories, then graduate to authoring
small changes.

§ Guardrails: flag large first diffs and suggest splitting into smaller changes.

§ Measure impact: time to first response, number of iterations, new-dev
satisfaction, and time to first owner-level approval.

PAGE 17

Rating
I would give this paper a 4 out of 5. It offers a clear, data-backed playbook for
modern code review that most teams can adopt today.

PAGE 18

Discussion points
§ Is Google’s one-approver norm (less than other companies) mainly viable because

ownership and readability create clear accountability, and would it still hold in
teams without those guardrails or in tightly coupled code?

§ The paper suggests very large diffs often include mass deletes but they didn't
mention why; why should these be handled differently?

§ Would an employee’s geographic location and time zone meaningfully affect their
satisfaction?

§ Could LLMs automate enough to allow guarded auto-merge for narrow, well-
tested changes, or will human reviewers always be required for design, security,
and accountability?

PAGE 19 PAGE 20

