. Paper background
MOdern COde ReVIew: A case StUdy at Caitlin Sadowski, Emma Séderberg, Luke Church, Michal Sipko at Google; Alberto
Google Bacchelli at the University of Zurich.

Published at the International Conference on Software Engineering, Software

Lo/erzs Engineering in Practice track, Gothenburg, Sweden, May 27 to June 3, 2018.

Exploratory study using 12 interviews, a survey with 44 respondents, and logs of
about nine million reviewed changes to examine motivations, practice, and
developer experience at Google.

Presented by

Youssef Souati

W UNIVERSITY OF
@ WATERLOO UNIVERSITY OF
pace 2 %) WATERLOO

What is modern code review Why Google
Before this, classic code inspections were formal, scheduled, and synchronous, with Google has required code review since early in its history and refined it for over a
planning, preparation, an in-person inspection meeting, rework, and follow-up. decade. Most development happens in a single monorepo with a uniform review

. . . workflow in Critique.
Email based reviews in open source were asynchronous but unstructured.

The scale is huge. About 20,000 code changes each workday. More than 25,000

Modern code review is informal and tool-based. It is asynchronous. It focuses on authors and reviewers. Dozens of offices around the world.

small diffs tied to a change. Discussion happens as line-level threaded comments
and one or more approvers sign off in the tool.

pace % WATERLOO pace 4 %) WATERLOO

Methodology

= Mixed-methods design using three lenses.
= Semi-structured interviews
= Critique tool logs
= A short targeted survey on a fresh review

= Direct comparison to Rigby and Bird’s convergent practices. Quantitative analysis
centers on flow, speed and frequency, change size, and number of reviewers to
check whether Google shows the same patterns.

pace s % WATERLOO

Research Method: Interviews

Purposeful selection
for diversity

Snowball sampling
(initial pool)

| Diversity dimensions |

Teams ¢ Technical areas * Roles * Tenure * Review roles

| Participants |

12 Googlers (SWE & SRE)
Tenure 1 month-10 years * Median ~5 years
Mix of tech leads, managers, and ICs

pace 7 % WATERLOO

Research Questions

= RQ1: motivations for review at Google.
= RQ2: how the process runs in practice at scale.

= RQ3: how developers perceive review and where it breaks.

= They complement Rigby and Bird’s cross-project work by doing a focused, deep case study inside one company.
= Rigby and Bird had identified five convergent practices.

= Lightweight flexible process. (CP1)

= Early, quick, frequent reviews. (CP2)

= Small changes. (CP3)

= Two reviewers often optimal. (CP4)

= Review as group problem solving. (CP5)

pace %) WATERLOO

Research Method: Critique tool logs

= Scope: Critique logs; only changes with >1 approver (here, “reviewer” = approver).

= Scale & time: Jan 2014—Jul 2016; ~9M changes, ~13M comments, 25k+ devs;
~20k changes/day.

= Clean + metrics: Main codebase; exclude uncommitted/zero-diff; filter bots;
measure latency (first response/approval), size (lines/files), reviewers/comments,
iterations.

pace s %) WATERLOO

Research Method: Survey Results: RQ1

= Targeting: 98 engineers, each about one just-reviewed change to cut recall bias. = Origin: enforce clarity; code should teach
future engineers; avoid single-owner
knowledge

= Instrument: 3 Likert value questions, 1 effects multiple-choice with “other,” plus 1
open-ended.

= Today (finding 1): Review focuses on
readability and maintainability; defect
= Role: Triangulate interview themes and capture immediate perceptions. finding is welcomed but not the only focus.

= Responses: 44 valid replies (45% response rate).

Comments vs. tenure at Google

— Comments per change
~ - Comments per 100 LoC

Philosophy: education + shared ownership as
the core purpose

Average number of comments
)
|

= (finding 2) Expectations for a review depend on
the work relationship between author and T ooty
reviewers. o
B WATERLGS s B WATERLGS
| |
Results: RQ2- How review runs Results: RQ2- Key metrics at scale
= Typical size: median ~24 lines; ~90% of changes touch <10 files
1. Create 2. Request 3. Comment P 4 907 8
Change Review Reviewer provides = Speed: first response often <1 hour for small changes; median time-to-approval
Author creates a change Author sends to reviewer(s) feedback <4 hours
= Participation: median 1 approver; <25% have >1
6. Commit 5. Approve 4. Modify & = Iteration: >80% of reviews finish in a single address-and-resend round
Author commits the code (LGTM) Reply
, (finding 4) Reviews are markedly faster with smaller changes than prior studies; one
Reviewer approves the Author addresses
change comments reviewer is often sufficient vs. two elsewhere.

(finding 3) Process is lightweight and flexible; ownership and readability are
explicit; tool includes reviewer recommendation and code analysis.

pace 1 % WATERLOO pace 12 %) WATERLOO

Results: RQ3- Breakdowns developers hit

= Distance: geo and org distance cause delays and misunderstandings.

= Social interactions: tone issues and power plays can sour reviews; negative-tone
comments are less useful.

= Tool customization: team-specific policies not always supported; new option
added to require all reviewers to sign off.

(finding 5) Despite years of refinement, code review still faces breakdowns rooted in
complex interactions.

pace 13 % WATERLOO

Positive points

= Culture + process + tooling as one coherent system. The paper shows how
readability and ownership ideals become explicit rules and then become Critique
features like reviewer suggestion and inline analyzers, making the workflow fast
but accountable.

Practical details teams can copy. Pre-commit gates, analyzer feedback with “Please
fix” and “Not useful,” and lightweight iteration policies are described clearly
enough to inform policy and tool decisions elsewhere.

= When they set out to measure review time, they didn’t take the easy self-report
route. They instrumented Critique, grouped events into review sessions with a 10
minute inactivity gap over five weeks, and got an objective estimate of about 3.2
hours per week on average and 2.6 median (Low compared to the 6.4 self-reported
for OSS projects).

pace 15 % WATERLOO

Results: RQ3- Satisfaction and time

Internal surveys show
Satisfaction Saisfid 97% of developers are
el satisfied with the
Critique tool.

(finding 5) Developers still consider review highly valuable and spend about three

hours per week reviewing. UNIVERSITY OF
pace 14 %) WATERLOO

Negative points

= Unclear interview geography. The paper does not state where interviewees were
located. Experiences can vary by region, especially socially, so important
breakdowns in other offices may be missed.

= Limited value from the survey. After the interviews, a small targeted survey adds
little. It would have been more useful with people the team could not meet in
person, especially in other locations. The authors say the survey adds confidence
in the coded themes, but the options were those themes, which likely biased
responses.

Satisfaction measured at the wrong level. Reporting that 97% are satisfied with
“code review” is unsurprising. Satisfaction should be measured for the process
itself, such as turnaround time, clarity of feedback, tool support, and friction
points.

pace 16 %) WATERLOO

Future work

= Run a focused study: follow new developers from day one to see how the cold start
affects the findings of this paper.

= Smoother integration: start with co-reviewing changes alongside owners to build
understanding and ownership of specific directories, then graduate to authoring
small changes.

= Guardrails: flag large first diffs and suggest splitting into smaller changes.

= Measure impact: time to first response, number of iterations, new-dev
satisfaction, and time to first owner-level approval.

- % WATERLOO

Discussion points

= Is Google’s one-approver norm (less than other companies) mainly viable because
ownership and readability create clear accountability, and would it still hold in
teams without those guardrails or in tightly coupled code?

= The paper suggests very large diffs often include mass deletes but they didn't
mention why; why should these be handled differently?

= Would an employee’s geographic location and time zone meaningfully affect their
satisfaction?

= Could LLMs automate enough to allow guarded auto-merge for narrow, well-
tested changes, or will human reviewers always be required for design, security,
and accountability?

pace 1 % WATERLOO

Rating

I would give this paper a 4 out of 5. It offers a clear, data-backed playbook for
modern code review that most teams can adopt today.

pace 1 %) WATERLOO

UNIVERSITY OF

WATERLOO

%

PAGE 20

