
Week 8: Paper 2: Expectations, Outcomes, and
Challenges of Modern Code Review

Haonan Zhang
h294zhang@uwaterloo.ca

1 Problem being solved
In this paper, the authors try to answer 3 research questions:
RQ1: What are the motivations and expectations for modern
code review? Do they change from managers to developers
and testers? RQ2: What are the actual outcomes of modern
code review?Do theymatch the expectations? RQ3:What are
the main challenges experienced when performing modern
code reviews relative to the expectations and outcomes?

2 New idea
The authors employ a mixed-method approach, combining
qualitative (interviews, observations, and card sorting) and
quantitative (survey-based validation) techniques. They be-
gan by using the results from a previous study about the
usage of CodeFlows. Although most questions were not rel-
evant to the present research, one question, “What do you
hope to accomplish when you submit a code review?” pro-
vided an initial set of motivations (finding defects, maintain-
ing awareness, improving code quality, assessing design).
These served as a starting point (and informal interview
guide) for the next step.

Then a series of one-to-one meetings (40–60 minutes) was
conducted. During which the researchers observed partic-
ipants performing live code reviews and then interviewed
them. The observation is done with minimal interference,
and when the developers start to exhibit similar patterns to
those they observed before, they reduce the observation time
to give more time for the interview and collect more useful
data. The semi-structured interviews try to explore a wider
range of review motivations and practices. The interviews
were transcribed and broken into coherent units for further
analysis.
Open card sorting was then used to group these units

(ideas) into higher-level categories. Because there were no
predefined categories, the team iterated on the grouping
until consistent themes emerged. A similar card sort was
performed on code review comments taken from the large
CodeFlow dataset. By sampling 200 review threads and print-
ing each comment on a card (570 total), the researchers could
identify key themes in how teams discussed and gave feed-
back during code reviews.
The categories generated by the two rounds of card sort-

ing (interviews and review comments) were then organized
into an affinity diagram. This technique places all the cat-
egories onto a wall and clusters them into logical groups

through discussion. It provides a high-level picture of the
major themes that emerged.

To verify and generalize these findings, two surveys were
conducted. The first targeted managers (165 responses) to
capture high-level perspectives on review practices in their
teams. The second was sent to 2,000 developers, returning
873 responses. This quantitative validation served to confirm
or challenge the earlier themes and categories derived from
the qualitative steps.

3 Positive points
1. Comprehensive qualitative and quantitative study.
2. Prove that finding defects is not the only purpose in

modern code review.
3. Show different perspectives about code review (manger

vs. developer).
4. Highlight the challenges of code review.

4 Negative points
1. Findings may not generalize to other companies/tools.
2. Potential observer bias in interviews and observations.
3. Subjectivity might be introduced when items fall into

multiple categories.
4. Missing practices happen outside CodeFlow.
5. Lack of verification of the outcomes and long-term

analysis of the outcomes of code review.

5 Future work
Help write a good code review to facilitate the code review
process. Long-term impact of code review on the quality of
software. Help find proper reviewers for code review. Help
understand the code change or automate code review.

6 Rating
5/5.

7 Discussion points
1. How do different organizational cultures affect code

review practice?
2. How to keep a balance between qualities and rapid

iteration?
3. How to give constructive reviews while avoiding dis-

couraging the authors?
4. How do you think about code review automation?



Conference’17, July 2017, Washington, DC, USA Haonan Zhang

8 Class Discussion
How can we give constructive reviews while avoiding dis-
couraging authors?

1. Discouragement comes more from the feeling that
code review isn’t helping, or it isn’t being taken seri-
ously.

2. Even worse if it leads to bad code being pushed and
breaking things.

3. Actually good constructive feedback may not actually
discourage at all.

4. Knowledge transfer is important especially for new
hires to illustrate how the company does things and
highlight nuances that may not be clear from a high
level.

5. Newhires need to be onboarded to understand company-
based tools and how they’re designed

6. Face to face meetings can pressure individuals to per-
form better or act more quickly

How do you feel about code review automation?
1. Code tracking tools have made leaps and bounds in

terms of allowing for better communication of code
review concepts.

2. Even as early as the 90s, code review was very low
level.

3. However, it is still important that people communicate
with each other about code directly.

4. Code review is expensive at companies with fewer
employees.

5. Hybrid approaches are good for helping this.
6. he hardest part of code review is understanding what

is going on in the code.
7. Any automated aspect should still be reviewed by the

relevant party.


	1 Problem being solved
	2 New idea
	3 Positive points
	4 Negative points
	5 Future work
	6 Rating
	7 Discussion points
	8 Class Discussion

