
Summary of Investigating code review quality: Do people and
participation matter?

Zhaoyi Ge

Problem Being Solved
Low quality code reviews may miss bugs in the code
changes. This paper investigates whether personal and
participation factors affect the quality of code review.

New Idea
This paper studied the quality of code review process at the
Mozilla project. The paper extracted commits from
Mozilla’s version control system, and then linked the bug
ID in each commit to the corresponding bug in Bugzilla,
the issue tracking system. The paper applied the SZZ
algorithm and tools to identify the bug-inducing commit.

The paper selected a handful of technical, personal and
participation factors. A multiple linear regression (MLR)
model is applied, where the factors are explanatory
variables and code review quality (buggy or not) is the
response variable.

Results from the model showed that more than half of the
code reviews are buggy. Moreover, some personal factors
such as reviews experience has a positive correlation with
code quality, and some participation factors (number of
commenting developers) are positively correlated with code
quality while some (number of developers on CC etc.) are
negatively correlated.

Positive Points
This paper employed a simple yet comprehensive empirical
methodology. The authors clearly outline each step of their
data collection and analysis pipeline. Extracting commits
and linking them with Bugzilla review data and applying
the SZZ algorithm. The process is straightforward and
transparent. The author also applied transformations and
filters on the data. and designed a set of heuristics to
reliably link commits to correct reviewed patches.These
actions greatly minimized the threats to validity.

The paper’s findings provide insights for almost every
developer. Human factors are challenges that almost every
development team faces. Whether in open source, industry,
or academia, these insights are directly applicable. The
research reminds us of human factors, which is something
we commonly miss when thinking about code reviews.

Negative Points

One limitation of this paper is its reliance on multiple linear
regression (MLR) as the only analysis method. It’s a very
simple statistical model, is it really a good model for this
scenario? MLR assumes linearity and independence among
factors, which may not accurately capture the complex
interactions between technical, personal, and social aspects
of code review.

The paper did not give clear, actionable items. While the
authors identify several statistically significant factors, the
paper doesn’t translate these findings into practical
guidance for improving real-world review processes. It’s
not clear what developers or project maintainers are
supposed to do with this information. The results feel
somewhat abstract and disconnected from actionable
improvements in software engineering workflows.

Future Work
Code review is a complex process involving personal and
social aspects . While the quantitative model in this paper
showed strong correlation between several factors and code
review quality, the numbers alone can’t fully explain the
human dynamics behind missed bugs. As future work, there
can be investigations aimed to capture the social context,
communication patterns, and interpersonal dynamics that
influence review quality.

Rating
3.5/5. It’s a very approachable paper for people outside of
SE.

Discussion

-​ What are your explanations for the two surprising
factors? Do you agree with the author or not?

-​ What are your takeaways from this paper? Would
you do anything differently when doing code
reviews after this paper?

https://plg.uwaterloo.ca/%7Emigod/papers/2015/icsme15-OleksiiOlgaLatifa.pdf
https://plg.uwaterloo.ca/%7Emigod/papers/2015/icsme15-OleksiiOlgaLatifa.pdf

-​ What are some of the factors that go beyond
technical, people and participation?
(Company-wise, Cultural, Social)

The professor talked about a professor at UofT who was
involved with Mozilla Foundation (separate from the
developers at Mozilla Project), who is concerned with
publicising Mozilla projects as OSS (open source software)
because of the nature of the Mozilla project.

The professor talked about the SZZ algorithm (founder
Tom Zimmerman and advisor Andreas Zeller), a
straightforward algorithm that finds when a bug is
introduced to the codebase; There exists a subarea of
improvements on the algorithm and many research papers
on this topic.

The professor talked about the issue of distinguishing the
science and engineering sides of SE research. This
scientific research does not need to be actionable for
engineers. The concern is that research should help us learn
what to do next, but this is not necessarily required.

Youssef agreed that cultural factors played a role in code
review quality. Felix talked about cultural and
communication factors as well.

The professor pointed out that code reviews serve purposes
other than catching bugs. Code reviews have been used to
teach and share expertise with new hires in a human way.
This helps them learn the culture and code review practices.

Asim talked about the human interaction element, where
developers are not really excited about doing code reviews;
it's just a job for them. So working on a good UI and tool
that provides all information easy to access, and helps
developers complete code reviews quickly, would make a
great impact on the code review quality.

Amaan talked about the reviewer queue length factors and
how developers have different workloads where a heavier

workload may rush reviewers to complete the tasks which
could impact the quality of code reviews. So the idea is to
develop some AI tools to optimize the workload
assignment across the developers more efficiently and
effectively across developers of varying skills and levels of
experience. The presenter agreed but posed a question of
when a reviewer doesn’t like to do a review. Amaan
suggested incorporating reviewer preference in AI tools to
better assign tasks to reviewers

