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What Problem Is Being Solved? 
Educators worry that students may submit AI-generated 
code as their own, and existing plagiarism tools struggle 
because AI code often is not textually similar to student 
work. The paper asks whether code stylometry and ML 
can reliably tell GPT-4-generated Python solutions from 
human ones? 
 
What Are the New Ideas? 
The authors build a stylometry-based classifier 
(XGBoost) using 140 layout, lexical, syntactic, and 
complexity features (e.g., average line length, AST node 
stats, cyclomatic complexity) to distinguish GPT-4 code 
from human solutions. They create a balanced dataset 
from CodeChef: 399 problems, 1,596 solutions (half 
human and half GPT-4), rebinned into easy/medium/hard 
for fair comparisons. 
 
Their system design of the study comprehensively 
compares: 
1.​ overall performance vs. multiple baselines 
2.​ performance without “gameable” features (like 

whitespace/empty lines) 
3.​ training only on correct solutions for semantics 

independence 
4.​ performance across difficulty levels for complexity 

independence.  
 
They use SHAP to explain model decisions and 
reasoning. The evaluation results show that overall F1 and 
AUC-ROC of 0.91; even without gameable features, 
F1/AUC-ROC stay at 0.89; performance is similar for 
easy/medium and only slightly lower on hard tasks. 
 
Positive Points: 
The paper uses a robust methodology with equal numbers 
of human and AI solutions across different levels of 
difficulty problems. It employs 140 stylometry and 
complexity features, and GroupKFold by problem 
prevents data leakage. Baselines such as random and 
n-gram models are tested for fair comparison. The 
approach remains effective even when restricted to 

non-gameable features. Finally, the authors use SHAP for 
both global and local feature explanations, which 
improves interpretability and builds human trust in the 
detection process. 
 
Negative Points: 
The study is platform-dependent since it uses only 
CodeChef, and coding practices may differ elsewhere. It 
samples the most popular 100 problems per difficulty 
with Python solutions, but may not capture all coding 
styles. The dataset also includes only GPT-4 for 
AI-generated code, so results may not generalize to other 
assistants. Finally, the correctness of AI code was checked 
only against CodeChef’s public test cases, not private 
ones. 
 
Future Work 
Future work could involve large-scale, real-world 
validation by testing on actual course submissions with 
consent and anonymization. Classifier judgments could 
then be compared against instructor-labelled ground truth. 
Since the current study uses only Python, expanding to 
languages like Java, C++, and JavaScript would test 
whether the stylometric signals remain consistent. 
 
Rating 
4 / 5: The paper is rigorous and has an interesting topic 
 
In-Class Discussion 
Discussion Point 1: How to use this research in 
practice? 
 
The original motivation of this work is plagiarism 
detection, but the model itself will need constant updates 
as both AI and human coding practices evolve. A key 
concern is minimizing false positives. Accuracy alone is 
not enough because we need interpretability. The 
algorithm here is explainable, but how interpretable is it 
really, and how might it be improved? With humans, 
responsibility is clear; with machines, accountability is 
murkier. At present, we cannot even prove code is 
human-generated. This creates a cat-and-mouse game 



where advances in AI require stronger detection and 
explanation tools. 
 
Discussion Point 2: How interpretable is the model 
really? How can we make it better? 
 
This connects to a deeper question in education: what are 
we actually teaching students, and what skills do we want 
them to develop? If the future of work involves AI 
assistants, then teaching understanding may matter more 
than teaching code generation. Writing code might not be 
the central skill anymore. In the past, people believed you 
were not skilled if you did not know assembly, but that 
view has since changed. 
 
Discussion Point 3: What if we try to circumvent these 
systems? 
 
As the saying goes, we shape our tools and then our tools 
shape us. With AI coders, we are already seeing this shift. 
We are becoming more code appraisers than code writers. 
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