
Summary of “Whodunit: Classifying Code as Human Authored or
GPT-4 generated- A case study on CodeChef problems”

Kevin Jie

What Problem Is Being Solved?
Educators worry that students may submit AI-generated
code as their own, and existing plagiarism tools struggle
because AI code often is not textually similar to student
work. The paper asks whether code stylometry and ML
can reliably tell GPT-4-generated Python solutions from
human ones?

What Are the New Ideas?
The authors build a stylometry-based classifier
(XGBoost) using 140 layout, lexical, syntactic, and
complexity features (e.g., average line length, AST node
stats, cyclomatic complexity) to distinguish GPT-4 code
from human solutions. They create a balanced dataset
from CodeChef: 399 problems, 1,596 solutions (half
human and half GPT-4), rebinned into easy/medium/hard
for fair comparisons.

Their system design of the study comprehensively
compares:
1.​ overall performance vs. multiple baselines
2.​ performance without “gameable” features (like

whitespace/empty lines)
3.​ training only on correct solutions for semantics

independence
4.​ performance across difficulty levels for complexity

independence.

They use SHAP to explain model decisions and
reasoning. The evaluation results show that overall F1 and
AUC-ROC of 0.91; even without gameable features,
F1/AUC-ROC stay at 0.89; performance is similar for
easy/medium and only slightly lower on hard tasks.

Positive Points:
The paper uses a robust methodology with equal numbers
of human and AI solutions across different levels of
difficulty problems. It employs 140 stylometry and
complexity features, and GroupKFold by problem
prevents data leakage. Baselines such as random and
n-gram models are tested for fair comparison. The
approach remains effective even when restricted to

non-gameable features. Finally, the authors use SHAP for
both global and local feature explanations, which
improves interpretability and builds human trust in the
detection process.

Negative Points:
The study is platform-dependent since it uses only
CodeChef, and coding practices may differ elsewhere. It
samples the most popular 100 problems per difficulty
with Python solutions, but may not capture all coding
styles. The dataset also includes only GPT-4 for
AI-generated code, so results may not generalize to other
assistants. Finally, the correctness of AI code was checked
only against CodeChef’s public test cases, not private
ones.

Future Work
Future work could involve large-scale, real-world
validation by testing on actual course submissions with
consent and anonymization. Classifier judgments could
then be compared against instructor-labelled ground truth.
Since the current study uses only Python, expanding to
languages like Java, C++, and JavaScript would test
whether the stylometric signals remain consistent.

Rating
4 / 5: The paper is rigorous and has an interesting topic

In-Class Discussion
Discussion Point 1: How to use this research in
practice?

The original motivation of this work is plagiarism
detection, but the model itself will need constant updates
as both AI and human coding practices evolve. A key
concern is minimizing false positives. Accuracy alone is
not enough because we need interpretability. The
algorithm here is explainable, but how interpretable is it
really, and how might it be improved? With humans,
responsibility is clear; with machines, accountability is
murkier. At present, we cannot even prove code is
human-generated. This creates a cat-and-mouse game

where advances in AI require stronger detection and
explanation tools.

Discussion Point 2: How interpretable is the model
really? How can we make it better?

This connects to a deeper question in education: what are
we actually teaching students, and what skills do we want
them to develop? If the future of work involves AI
assistants, then teaching understanding may matter more
than teaching code generation. Writing code might not be
the central skill anymore. In the past, people believed you
were not skilled if you did not know assembly, but that
view has since changed.

Discussion Point 3: What if we try to circumvent these
systems?

As the saying goes, we shape our tools and then our tools
shape us. With AI coders, we are already seeing this shift.
We are becoming more code appraisers than code writers.

Reference
[1] Oseremen Joy Idialu, Mathews, N.S., Rungroj
Maipradit, Atlee, J.M. and Nagappan, M. 2024.
Whodunit: Classifying Code as Human Authored or
GPT-4 Generated - A case study on CodeChef problems.
MSR ’24: 21st International Conference on Mining
Software Repositories. (Jul. 2024), 394–406.
DOI:https://doi.org/10.1145/3643991.3644926.

