Whodunit: Classifying Code as Human
Authored or GPT-4 Generated — A Case

Study on CodeChef Problems

Presenter: Kevin Jie

Accepted by 21st Mining Software Repositories (MSR)

Background & Motivation
e Al coding assistants (Copilot, ChatGPT, etc.) widely used
e Motivation:

o Instructors concern students cheating by using generative-Al tools for their assignments in an
introductory programming course.

e Traditional plagiarism detectors (e.g., MOSS) rely on similarity
o But LLM code often shows low similarity — hard to flag

e Stylometry: the statistical analysis of variations in literary style between one writer or genre
and another

o Layout, lexical, syntactic, complexity metrics

Background & Motivation

is_palindrome(n):
return str(n) == str(n)[::-1]

palindromic_numbers_sum(1,
total = @

r:

for _ in range(int(input())):
2 1, r = map(int, input().split()) . T O e s
result = @ if is_palindrome(n):
4 for i in range(l, r + 1): 8 total += n
5 if str(i) == str(i)[::-11: : ETTINEE)
6 result += i 1ot = int(input())
7 print(result) i
15 for i in range(t):
u 1, r = map(int, input().split())
5 result = palindromic_numbers_sum(l, r)
1 print (result)

(a) Example of human code

(b) Example of ChatGPT code

Existing Solutions & Related Works

® Prior studies:

o Bukhari et al. attempt to use machine learning to distinguish between 28 student-authored and
30 Al-generated solutions for a C-language programming assignment.

o Their approach leverages lexical and syntactic features in conjunction with multiple

machine-learning models, achieving an accuracy rate of 92%.

e Commercial Al-detection (e.g. HankerRank, CoderByte) tools lack independent validation
e Need for:

O Scalable dataset of human + LLM code

o Robust, interpretable models

o Tests across difficulty levels & solution correctness

Research Questions

e RQ1:How well can code-stylometry features distinguish human-authored code from GPT-4
generated code?

o Inherent characteristics matter

® RQ2: How influential are non-gameable features in differentiating human-authored vs. GPT-4
generated code?

o “Decoration” independent (e.g., white spaces or indentation length)
e RQ3: How well does the classifier perform when trained and evaluated on only correct solutions?
o Semantic independent

e RQA4: How well does the classifier perform when trained and evaluated across varying levels of
problem difficulty?

PR d

o Ce lexity and alg

System Design for the Study

Table 1: Difficulty Levels of Selected CodeChef Probl

Level Range Count

Beginner 0-999 12

1* Beginner 1000 - 1199 45
1" Advanced 1200 - 1399 71
2" Beginner 1400 - 1499 55
2" Advanced 1500 - 1599 56
3* Beginner 1600 - 1699 60

Table 2: Final Problem Set Binned into 3 Classes of Difficulty

Difficulty Difficulty Scores - Range Average Count

3* Advanced 1700-1799 53 Easy 828 - 1417 1224.95 133
4* 1800-1999 30 Medium 1419 - 1646 1529.51 133
5* 2000-2199 14 Hard 1647 - 3420 1827.50 133

6% 2200 - 2499 2
7% 2500 - 5000 1

System Design for the Study

@ Data Collection

T4 @ Feature Extraction
399 coding problems 1596 solutions

Generated promps fom 798 A1
coding problems. solutions

798 human soloutions.

: Classification

Classifier XGBoost Classifier
140 features Construction ~ Classifier Evaluation

Results

I S =\
F15) (OAN

Figure 2: An overview of our approach in detecting GPT-4 generated code

System Design for the Study

Table 3: Code Stylometry and Code Complexity Features

Feature

ASTNodeTypesTF [11]
ASTNodeTypeAvgDep [11]
avgFunctionLength [21]
avgldentifierLength [21]
avgLineLength [11]
avgParams [11]
branchingFactor [11]
cyclomaticComplexity [39]
emptyLinesDensity [11]

Description

Term frequency of 130 possible AST node types excluding leaves
Average depth of 130 possible AST node types excluding leaves.
The average length of lines in a function.

The average length of identifier names.

The average length of characters in each line.

The average number of parameters across all functions.
Average branching factor of the code’s AST.

The number of decisions within a block of code.

The number of empty lines divided by source code lines.

System Design for the Study

e No comments

e Zero shots

You are an expert Python Programmer. Your job is to look at a
programming puzzle provided by the user and output 2 different
ways to solve the solution in python.

The Input is provided with the following contents:

{The problem statement}

{How the input would be formatted},

{Format to be followed in the output generated},

{Constraints on the variables specified in the problem}

Make sure to take the input from the user considering the input
format Output should be printed as defined in the output format
Do not attempt to explain the solution only output the code in the
following format:

[PYTHON1]

{Solution to given puzzle in Python}

[\PYTHON1]

[PYTHONZ]

{Alternate solution to given puzzle in Python}

[\PYTHON2]

Evaluation

Human

avglinelength
maxDecisionTokens
ntad_Assign

def Density
whiteSpaceRatio
avgFunctionLength
emptyLinesDensity
avgldentifierLength
maintainabilityindex

e ol
ot
- Pt -
-4-——-——
—-———*
—
__._.‘
e,
-
»-

ntad_Name

5 a2 o 2 4
SHAP value (impact on model output)

Figure 4: SHAP feature importance of our approach

Figure 3: Prompt used for generating 2 Al code solutions

Feature value

avglinelength
maxDecisionTokens
def_Density
ntad_Assign

avgFunctionLength

Feature value

avgldentifierLength
maintainabilitylndex
nttf_Name
ntad_Name

stdDevLineLength

8

5 4+ 2 o 2 4
SHAP value (impact on model output)

Figure 5: SHAP feature importance of non-gameable features

Evaluation
Table 4: Classifier Performance Comparison among Different
Approaches for Distinguishing between Al-generated and
Human-authored Code

Our Approach Baseline

e Answers to RQ1 All Non-Gameable Naive n-grams +L
and RQ2 n=2 n=3
Accuracy 091 0.89 - 0.86 0.88

Precision 0.91 0.89 0.5 0.86 0.87

Recall 0.91 0.89 0.5 0.88 0.88

F1-score 0.91 0.89 0.5 0.87 0.88

AUC-ROC 0.91 0.89 0.86 0.88

Evaluation

Table 5: Classifier Performance Comparison on Correct and
Randomly Sampled Solutions

Our Approach
C R

Baseline (n-grams + L)

n=2 n=3
C R C R

Accuracy 0.86 0.87 0.83 0.84 0.87 0.86
Precision 0.87 0.87 0.83 0.84 0.87 0.86
Recall 0.86 0.88 0.81 0.85 0.87 0.85
F1-score 0.86 0.87 0.82 0.84 0.87 0.86
AUC-ROC 0.86 0.87 0.83 0.84 0.87 0.86

e Answers to RQ3

C = Correct Solutions, R = Random Solutions, L = Lexical Features

Evaluation

Table 6: Classifier Performance Comparison Across Levels of Problem Difficulty

Our Approach
Easy Medium Hard n=2 n=3
Medium Hard

Baseline (n-grams + Lexical Features)

Easy Medium Hard Easy

Accuracy 0.89 0.89 0.87 0.87 0.79 0.80 0.89 0.86 0.80
Precision 0.87 0.88 0.89 0.85 0.80 0.79 0.89 0.87 0.80
Recall 0.91 0.90 0.86 0.89 0.77 0.82 0.88 0.85 0.81
F1-score 0.89 0.89 0.87 0.87 0.79 0.80 0.89 0.86 0.80

AUC-ROC 0.89 0.89 0.87 0.87 0.79 0.80 0.89 0.86 0.80

e Answers to RQ4

Evaluation

def_Density
whiteSpaceRatio
= ntad_Assign

= emptylinesDensity

def solve(n, m):
2 return 1 if min(n, m) > 1 else 2

maxDecisionTokens
41,856 = maintainabilitylndex +0.75

numVariablesDensity

4+ n, m = map(int, input().strip().split())

5 print(solve(n, m)) for_Density

05 ~ if_Density
(a) GPT-4 generated code

1 2 3 a

127 other features

0
EUAX)] = — 0.0

(b) SHAP waterfall plot showing how features impact the model’s
decision for this code

Evaluation

n, map(int, input().split())
mi

ma +m

ans [1 for i in range(ma + 1)]

for i in range(2, int(max*@.5) + 1):
for j in range(i + i, ma + 1, i):
ans[jl = @
ans[e] = o
ans[1] = o
print(ans.count (1))

Evaluation

def getCount(h,m,i) :
h=int (h)
m=int (m)
h1=0
1st=[11,22,33,44,55,66,77,88,99]
while(hi<h) :
for ml in range(0,m) :
if hi1<ie :
if(mi<1@ and hi==m1) :
if (m1 in 1lst and m1%1

count[i]+=1
==h1) : countli

I+=1
else :
if(ml in 1st and h1==m1) : count[iJ]+=1
if(h1 in 1st and h1%10==m1) : count[il+=1
h1+=1
t=int(input())
count=[0]xt
for i in range(,t) :
h,m=input ().split()
getCount (h,m, i)

for i in count : print(i)

36 - avglineLength

emptyLinesDensity

ntad_Assign
0 = def_Density

35 = whiteSpaceRatio

= ntad_Name

if_Density
7 = avgldentifierLength
0 = avgFunctionLength

127 other features

0
ELAX)] ~ —

(b) SHAP waterfall plot showing how features impact the model’s
decision for this code

x) 1
GPra

12 = avgFunctionLength
4.66 = avglinelength
’ - numstatementsDensity

- nttf_Compare

- whiteSpaceRatio
maxDecisionTokens
171 = ntad_Assign

0.25 = if_Density

ntad_Call

127 other features

[
EM0] = —

(b) SHAP waterfall plot showing how features impact the model’s
decision for this code

Positives

e Robust methodology:
Equal numbers of human and Al solutions, spanning Easy/Medium/Hard difficulty.
Feature set of 140 stylometry + complexity metrics.

GroupKFold by problem ensures no data leakage.

o Tested baselines (random + n-grams) for fair comparison.
o Robustness checks:
m Works even with only non-gameable features.
e Interpretability: Uses SHAP for global & local feature explanation — supports human trust in detection.

e Open science: Dataset, feature lists, replication package made public for reuse.

Limitations

Table 1: Difficulty Levels of Selected CodeChef Probl

Level Range Count

Beginner 0-999 12

1* Beginner 1000 - 1199 45

1" Advanced 1200 - 1399 71
2" Beginner 1400 - 1499 55

Table 2: Final Problem Set Binned into 3 Classes of Difficulty

2" Advanced 1500 -1599 56 Difficulty Difficulty Scores - Range Average Count

3* Beginner 1600 - 1699 60

3* Advanced 1700 - 1799 53 Easy 828 - 1417 1224.95 133
4" 1800 - 1999 30 Medium 1419 - 1646 1529.51 133
' 2000-2199 14 Hard 1647 - 3420 1827.50 133

6% 2200 - 2499 2
7% 2500 - 5000 1

Limitations

e Platform dependence: Study is based only on CodeChef; coding practices may differ on other
platforms.

Problem sampling: Used the most popular 100 problems per difficulty (with Python solutions). While
this spans from beginner to expert, it might not capture all coding styles.

Representativeness & Model coverage: Only GPT-4 was used for Al-generated code; results may not
generalize to outputs from other Al assistants.

Correctness checking: Al-generated code was validated only against public test cases from CodeChef,
not private ones.

Future Works
e Large-Scale, Real-World Validation

o Test on real course submissions (with consent + anonymization).

o Compare classifier judgments against instructor-labeled ground truth.
e Multiple Languages

o Current study: Python only.

o Future: test across Java, C++, JavaScript, etc., to see if stylometric signals hold.

Discussion

e How to utilize the research result?

e 4 /5:rigorous paper, interesting topic, but applicable...?

Discussion

Reference

e How to utilize the research result?
Oseremen Joy Idialu, Mathews, N.S., Rungroj Maipradit, Atlee, J.M. and Nagappan, M. 2024. Whodunit:

e The authors used GroupKFold by problem to avoid leakage. Classifying Code as Human Authored or GPT-4 Generated - A case study on CodeChef problems. MSR
’24: 21st International Conference on Mining Software Repositories. (Jul. 2024), 394-406.

o Does this truly guarantee independence, or could stylistic overlap between problems still bias results?
DOl:https://doi.org/10.1145/3643991.3644926.

o SHAP interpretability is highlighted, but...

o Do SHAP explanations meaningfully help instructors, or are they too abstract for non-ML experts?

