CS848 Week 3 Review
Zhiheng Lyu

z63lyu@uwaterloo.ca
University of Waterloo
Waterloo, ON, CA

ACM Reference Format:
Zhiheng Lyu. 2025. CS848 Week 3 Review. In . ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Paper 1: Human-in-the-Loop LLM Agents for
Software Development

e Problem Being Solved. Large language model (LLM) agents
have shown strong performance on structured benchmarks
such as SWE-bench, yet their utility in real-world software
engineering remains uncertain. Benchmarks tend to present
problems in a sequential, waterfall-like form: a clear issue de-
scription, a well-defined repository, and a fixed test harness.
In contrast, enterprise environments like Atlassian JIRA are
messy. Issues are short, ambiguous, and distributed across
heterogeneous repositories and languages. Moreover, both
clients and programmers often do not know what they want
until they see code in action. This iterative discovery pro-
cess is central to software development, raising the question:
can LLM-based agents actually support this human feed-
back loop at scale, or do they falter when faced with noisy,
evolving requirements?

e New Idea. The paper introduces HULA (Human-in-the-
Loop LLM-based Agents), a framework that embeds Al agents
directly within JIRA workflows. HULA operates through
three roles:

(1) An AI Planner, which identifies relevant files and drafts a
plan of action.

(2) An AI Coding agent, which generates proposed code mod-
ifications.

(3) A Human Engineer, who reviews, edits, and approves at
each step.

This tripartite structure reflects an explicit rejection of full

autonomy. Instead, HULA positions the Al as a junior collabo-

rator, capable of drafting but dependent on human oversight.

The evaluation was multi-stage: offline benchmarking (SWE-

bench and 369 JIRA issues), an online deployment over 663

live issues, and a survey of 109 Atlassian engineers.

e Positive Points.

— Real-world deployment. By moving beyond controlled bench-
marks and integrating into live JIRA workflows, the study
demonstrates adoption at scale. This is a rare and valuable
contribution in a field dominated by synthetic datasets.

— Multi-modal evaluation. The triangulation of offline tasks,
online deployment, and user surveys strengthens confi-
dence in the findings. It avoids relying solely on pass@k
metrics or simulation-based assessments.

Conference’17, Washington, DC, USA
2025. ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/10.1145/nnnnnnn.nnnnnnn

— Human-centered workflow. The design explicitly incorpo-
rates human review at every stage, acknowledging that
developers must validate, adapt, and refine code. Many
survey participants reported faster onboarding and accel-
eration of routine tasks.

— Evidence of practical utility. Plan approval rates exceeded
80%, and over 50 pull requests were merged. These num-
bers indicate that Al can provide incremental value, even
if the code is not fully correct.

e Negative Points.

— Shallow problem framing. While the paper acknowledges
the gap between benchmarks and enterprise complexity,
the analysis remains surface-level. For instance, recall for
file localization drops from 86% on SWE-bench to 30%
in JIRA, yet the authors stop short of dissecting the root
causes (e.g., short issue length, missing context, multi-repo
structures). Without such depth, the work risks being clas-
sified as “low-hanging fruit™: an early exploration that
demonstrates feasibility but leaves most challenges unre-
solved.

— Economic value underexplored. The paper emphasizes drop-
off percentages and merge success, but ignores the cost of
human review. Developers must spend significant cogni-
tive energy editing, correcting, or discarding Al-generated
code. Without factoring in this human effort, efficiency
claims are incomplete. From a productivity perspective,
the true metric should be net savings in developer time,
not raw Al contribution.

— Metrics misaligned with practice. The discussion highlighted
that drop-off percentages (shown in graphs) may not mat-
ter as much as the authors assume. In practice, a higher
number of merge requests (MRs) can be a healthy signal, in-
dicating many opportunities for incremental improvement.
What matters more is how developer energy is distributed
across stages: are they spending time on trivial edits, or
are they freed to focus on higher-value challenges?

— Moderate technical novelty. The architecture largely orches-
trates GPT-4 into a multi-stage pipeline. While valuable as
deployment evidence, it lacks algorithmic or methodolog-
ical innovation (e.g., adaptive retrieval, feedback-aware
training).

¢ Future Work.

— Integrate richer context. Go beyond short JIRA issue text by
linking documentation, historical tickets, commit histories,
and repository embeddings. This could narrow the gap
between enterprise tasks and benchmark-style clarity.

— Redefine evaluation metrics. Replace or augment drop-off
percentages with measures that reflect real value: main-
tainability, readability, defect density, and, crucially, net
developer time saved.


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Zhiheng Lyu

— Model economic trade-offs. Explicitly quantify the cost of
human review at each pipeline stage. Only by comparing
Al contribution against human editing burden can we
evaluate whether the workflow is cost-effective.

— Continuous feedback integration. Move beyond simple ap-
proval/rejection to structured annotations and adaptive
retraining. This could allow systems like HULA to learn
iteratively, reducing human review effort over time.

— Compare paradigms. Systematically evaluate HULA against
Al-native IDEs (e.g., Cursor, Copilot) to see which human-
Al interfaces developers prefer and why.

e Rating. I would rate the paper 3.5/5. It represents an im-
portant step toward bridging benchmarks and enterprise
practice, but its contributions lie more in deployment logis-
tics than in deep technical innovation. The lack of economic
modeling and the superficial treatment of performance gaps
mean that its conclusions could shift substantially with fur-
ther optimization. The study is best seen as a first demonstra-
tion of feasibility, not as definitive evidence of sustainable
productivity gains.

e Discussion Points.

— Should Al-assisted development aim to automate more
aggressively, or double down on iterative human-AI co-
design that embraces feedback as essential?

— How do we evaluate economic value realistically? What
metrics should account for human review effort, cognitive
load, and opportunity cost?

- Are “low-hanging fruit” tasks sufficient to justify enter-
prise integration, or do they risk creating the illusion of
efficiency while masking deeper bottlenecks?

- Could a surge in merge requests (MRs) actually be posi-
tive, signaling more iteration and refinement, rather than
inefficiency?



	1 Paper 1: Human-in-the-Loop LLM Agents for Software Development
	2 Paper 2: Whodunit – Classifying Human vs. GPT-4 Code
	3 Paper 3: Automating Code Review Activities by Large-Scale Pre-training

