LLM Code Agent for SWE

e Agentic LLM are Strong on SWE Tasks, but how good are they?

Human-In-the-Loop Software
Development Agents Bash Crrfl(:ioX | Term(ij::per |

Zhiheng Lyu 21143093 Search Q Repository €)

:= Filesystem

[LLM Agent]—' Edit Files & | []]| T examples

[

3 sympy/
View Files D [Readme.md
Fas ./run_tests.sh
Finish v |
- J

Offline Benchmarks - SWE-Bench HULA: Human-in-the-Loop LLM-based Agents

Framaownrlk
e Parad igm of SWE-Bench e Problems? Stages 1. Setting up a task 2. Planning 3. Coding 4. Raisinga PR
o Python-only, 12 OSS projects o No multi-language, no enterprise Steps Prepare an Input Generate a Plan Review a Plan Generatea Code 'Refine a Code Raise a PR
o Long, detailed issue descriptions (~295 diversity ~ ~ ~
tokens) . o Tasks top standardized vs. industry iy “ “ x “
o Complete unit tests complexity Agent
o End-to-End, coarse granularity l Tools
feedback
= vii‘ {Jira issue} °
® lssue -> (@ Language Model) E) Unit Tests + —> (—> {Relevant —> ()—> {Plan} —>)—> {Code change}——> {Pull Request}
v N "

data leak in GBDT due to warm 3 u{Code repository} les) (_l <_|

start (This is about the non- PrePR PostPR Tests Human Human

histogram-based version of... 11 Generated PR v join_struct_col feedback @ feedback

+20 -12 HEENE v ustack_struct_col LLM-based C) &

) Codebase BB sklearn Agent = =

B sklearn/ (k] txt D) gradient_boosting.py > ol dstack_struct_col 9 =

sklearn, regs.txi 4l " . _ . " -
i File localization Creating a coding plan Implementing code
BB examples/ [3 setup.cfg D helper.py bl matrix_transform (3) 2] ()
v euclidean_diff

D READMErst [) setup.py W utils =]

How to Evaluate HULA?

Stages 1. Offline Evaluation 2. Online Evaluation 38

When Pre-deployment June July-mid Sept

Survey

September

= Ex
—=| am @
= i =]
—> Initial =>» c— _
SWE-bench (n=500) Trials Deployment Surveys
Internal Dataset (n=369) (n=45) (n=260~2600) (n=146)
Evaluation Stage 2 - How HULA Works?
1. Setting up a task: 4. Raising a PR:
To refine the issue task 2. Planning: 3. Coding: To checkout a code branch
and select the code repository. To review, refine, and re-generate the plan. To review, refine and re-generate the code. or raise a pull request.
2 R v lib / matplotlib / _constraints.py Code with Al Agent

0 Issue description
Jira Issue

‘About this nformation
Al Agent uses the information from ths task as

Update the *LayoutGrid" class to handle the new

+ Add new instruction

T lssue description

b by

@ i matplotiib / _f

Plan

+ Add new instruction

@ i matplotiib _figureTests.py

© Repository Code Repository

Add tests for the add_subfigure method

About thisinformation

Al Agent uses this information after scanning + Add new instruction

+ Repository

Human Feedback on Plan

© eCommercePlatform v+

© context 3
© Pin ©

© Review code.

Checkoutbranch Create pull equest

Viow log

Evaluation Stage 1 - Offline Evaluation

TABLE I TABLE III
A STATISTICS SUMMARY OF BENCHMARK DATASETS.
(RQ1) THE OFFLINE EVALUATION RESULTS OF HULA.

Dataset Data Min | Median | Max
SWE-bench | Issue Information (token) 2% | 295 | 6939 Metrics | SWE-bench Verified | Internal
Verified Changed files (count) 2 0} 22 %Issues for Success Generation 100%
(n=500) Human-written code (token) 89 220 5,057 Recall of File Localization 86% 30%
— Issue Information (token) 11 75 1,114 %lssues for Perfect File 'Localizalion 84% 15%
(0=369) Changed files (count) 1 3 44 %lssues for Perfect Passing Test Cases 31% -

Human-written code (token) 82 1,275 47,520 %Issues of High Code Similarity 45% 30%

Evaluation Stage 2 - Usage Flow

Merged PRs:
56 (59%)
Raise a PR
95 (raised PR raf8185%)
3 376 .
433 : (code generation Non-merged PRs:
= £ ' rate 87%) 39 (41%)
527 =2 (plan approval g
| (plan generation E rate 82%) 8
663 % rate: 79%) 3
4 & Drop-off:
§ 568

Fig. 4. (RQ2) The Online Evaluation Results of HULA.

Evaluation Stage 3 - Survey (n=109)

[Planning stage]

Q1. The identified files are relevant to the issue description.

Q2. The identified files align with how | would have approached this issue.

Q3. The changes to the identified files align accurately with the issue description.

Q4. The changes to the identified files align accurately

with how | would have approached this issue.

Q5. The generated code can be easily understood and modified to solve the issue.

Q6. The generated code accurately solves the issue.

Q7. The generated code contains no defects and fulfils non-functional requirements.

Q8. The generated code change is complete and fully addresses the issue. F 20% |

[Coding stage] 70% 60% 50% 40% 30% 20% 10% 0% 10% 20% 30% 40% 50% 60% 70% B80%
Percentage of Responses

Fig. 6. The Survey Responses on the Satisfaction of the Generated Plans and Code by HULA (n=109).

Review: Positive Point

o Real-world deployment inside Atlassian JIRA — beyond lab
studies

e Multi-stage evaluation: offline, online, survey — rigorous
triangulation

¢ Human-in-the-loop design: pragmatic, reduces context switching &
workload

e Strong adoption metrics: 80%+ plan approval, 50+ merged PRs

Conclusion

HULA: First human-in-the-loop LLM agent framework deployed in Atlassian
JIRA.
Key findings:
e Works well for planning and simple tasks.
e Still challenges in code quality and complex issues.
Takeaways:
e Human-Al collaboration > full automation (at least for now).
e Benchmark-real world gap — future benchmarks must evolve.

Future: Improve context, richer evaluation metrics, continuous learning from
feedback.

Review: Negative Point

e Lack of comparison with IDE-native tools (e.g., Cursor, Copilot) —
unclear if HULA is the best collaboration paradigm

e Limited technical novelty — mainly orchestration of GPT-4 into
workflow

o Insufficient task-level analysis — no breakdown of which issue
types (fix, refactor, feature) succeed or fail more often, nor difficulty
profiling

o Weakness in agentic scaffold — pipeline design still fragile, may not
generalize well

Rating & Future Work

Rating: 3.5/ 5 — solid deployment study with valuable insights, but limited
novelty and code quality concerns remain

Future Work:

Improve context retrieval (docs, history, embeddings)

Richer evaluation metrics (readability, maintainability, defect density)
Continuous learning from developer feedback

Agentic Arena: benchmark where developers compare different agents
head-to-head

The End.

Thanks for your listening.

Discussion Points & QA

e Future Paradigm: Human-in-the-Loop (Cursor) v.s. Fully Autonomous
(Claude Code like, End2End)?

e Efficiency vs quality: would companies accept “Al writes 70%, human edits
30%"?

e Benchmark vs reality: how should we design next-gen datasets?

