
Summary Review: On the Naturalness of Software
Eimaan Saqib

e2saqib@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

ACM Reference Format:
Eimaan Saqib. 2018. Summary Review: On the Naturalness of Software. In
Proceedings of Make sure to enter the correct conference title from your rights
confirmation email (Conference acronym ’XX). ACM, New York, NY, USA,
2 pages. https://doi.org/XXXXXXX.XXXXXXX

1 PAPER SUMMARY
The paper explores the use of statistical models trained on large
code corpora to improve various aspects of software engineering.
The idea is that like natural language, code has patterns and reg-
ularities that can be captured with probabilistic techniques. The
paper uses n-gram language models to capture regularities by pre-
dicting the probability of a token based on the preceding context.
The authors use the models to show that programming languages
have predictable patterns like human language.

A major challenge is data sparsity. The paper suggests using
smoothing techniques to handle the issue. The authors compare
cross-entropy loss generated by training models on corpora with
English language vs Java projects, between different Java projects
by training on one project and testing on others, and across Ubuntu
application domains. They find that code has more predictable
patterns than natural language, the models train to patterns specific
to the project instead of just learning patterns in the language used,
and that models also train to recognize patterns specific to the
respective domains.

The authors also create a code suggestion heuristic by merging
suggestions from the Eclipse IDE and their trained n-gram model.
They find that the merged heuristic consistently performs better
than just using the heuristic-based Eclipse suggestion engine.

2 POSITIVE POINTS
(1) The paper explores statistical language models for code,

which laid the groundwork for tools like GitHub Copilot,
CodeT5, and Codex. This early insight into "naturalness"
in code could have helped inspire deep learning-based ap-
proaches that now dominate AI-assisted programming.

(2) The paper suggests that statistical models can capture dif-
ferent aspects of code structure (syntax, type, scope, and
semantics). Modern approaches, such as transformer-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

models, have indeed shown this to be true, validating the
paper’s hypothesis.

(3) Instead of just focusing on autocompletion, the paper ex-
plores applications in error detection, accessibility, and ma-
chine translation of code, which are still relevant research
directions.

(4) The idea of using statistical methods to approximate expen-
sive static analysis tools is insightful. Even today, researchers
are trying to balance soundness with efficiency in static anal-
ysis tools.

3 NEGATIVE POINTS
(1) The paper briefly mentions deep learning as a possible future

direction, but by 2016, neural networks were already proving
effective for natural language tasks. The paper could have
explored neural approaches (such as LSTMs, which were
popular then) in more depth.

(2) The primary approach discussed is based on n-gram lan-
guage models, which are effective for local patterns but
struggle with long-range dependencies. Modern tools use
transformers but even at the time, the paper could have used
neural-network based techniques.

(3) The paper does not address issues like bias in training data,
security risks, or ethical concerns about AI-generated code.

(4) The paper does not address the computational cost of train-
ing and using such models in real-world software engineer-
ing workflows.

4 FUTUREWORK
(1) Future work could examine how transformer-based models

like Codex, Copilot, or StarCoder outperform statistical mod-
els and how hybrid approaches (e.g., combining statistical
heuristics with deep learning) could enhance reliability.

(2) Future research could explore combining textual descrip-
tions, diagrams, and execution traces to build better software
understanding tools.

5 RATING
4.5/5

The paper was ahead of its time in applying statistical and prob-
abilistic models to software engineering tasks like code completion,
bug detection, and summarization. There could have been a discus-
sion on scalability and ethical/security concerns. But overall this is
still a great paper for its time.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Eimaan Saqib

6 DISCUSSION POINTS
(1) The Role of Statistical Models vs. Deep Learning in

Software Engineering: The discussion began with an ex-
ploration of whether simple statistical models still have rele-
vance in an era dominated by deep learning (DL). While DL
has become the mainstream approach, participants agreed
that this should not lead to the outright dismissal of statisti-
cal methods. Key points raised include:
• Deep learning models are resource-intensive, requiring
significant computational power and large datasets, which
may not always be practical. A statistical model that achieves
90% effectiveness at a fraction of the cost still holds value.

• Some tasks, such as syntax-based code completion, may be
better suited for traditional models like syntax trees rather
than DL-based approaches. While deep learning excels
in broader suggestion tasks, explainability and efficiency
remain strengths of statistical models.

• The professor noted that with the increasing cost of run-
ning large-scale DL models, practical alternatives should
not be overlooked, especially when explainability is a con-
cern.

(2) Trade-off Between AI-Assisted Coding Speed and Code
Quality: The class debated whether tools like GitHub Copi-
lot and ChatGPT improve productivity at the cost of software
quality. The following perspectives emerged:
• AI tools are often overly confident in their responses,
which can mislead developers. One student suggested us-
ing them for idea generation rather than direct implemen-
tation, as AI-generated code may work in one context but
fail in another.

• The professor expressed concerns that companies might
prioritize cost-cutting over quality by replacing developers
with AI, raising ethical and workforce-related issues.

• Some students argued that programmers would still be
needed for oversight. However, they emphasized that blindly
trustingAI-generated codewithout careful validation could
be harmful.

(3) AI Coding Tools and Reinforcement of Biases: The dis-
cussion also touched on how AI models, trained on large
datasets, might perpetuate biases present in human-written
code. Key concerns included:
• If training data contains insecure, inefficient, or biased
code, AI models might reinforce bad programming prac-
tices.

• There is an open question about whether AI should ac-
tively correct such biases, even if that contradicts human
developers’ preferences.

(4) AI-Driven Software Maintenance: Who Maintains AI-
Written Code?: A major concern was the long-term main-
tenance of AI-generated software. The discussion revolved
around the role of human engineers in ensuring AI-driven
code remains sustainable:
• Some students argued that instead of reducing the work-
force, companies should invest in maintaining AI systems
while ensuring compliance with ethical and technical stan-
dards.

• The professor expressed skepticism, citing past trends
where companies prioritized short-term profits over long-
term technical needs. He referenced the shift in corporate
strategies during the 1990s, where profitability began tak-
ing precedence over technological innovation.

• One student countered that industries such as gaming
have faced backlash for prioritizing shareholder profits at
the expense of quality, suggesting that a similar pushback
may occur in AI-driven software development.

(5) The Concept of "Naturalness" in Code: The final discus-
sion centered on whether the notion of "natural" program-
ming should always be the goal:
• Some students argued that predictability in code is bene-
ficial, as programming is fundamentally about communi-
cation between developers. Readable and structured code
improves maintainability.

• However, others pointed out that certain domains, such as
security, require unpredictability. For instance, passwords
and cryptographic implementations should not follow eas-
ily guessable patterns.

• The discussion concluded that while naturalness is useful
for general software development, there are cases where
deviation from common patterns is necessary.


	1 Paper Summary
	2 Positive Points
	3 Negative Points
	4 Future Work
	5 Rating
	6 Discussion Points

