BACKGROUND
ON THE NATURALNESS OF SOFTWARE THEEVOLUTION OF LANGUAGE

ABRAM HINDLE, EARL T. BARR, MARK GABEL, ZHENDONG SU, AND PREMKUMAR DEVANBU
= Language evolved under noise, urgency, and efficiency -> simple, repetitive, and expedient patterns
= History of NLP:
= 1960s -> rule based approaches
= 1970s - 1980s -> logic and formal semantics
= 1980s - present -> data-driven statistical approach

= Can NLP techniques be applied to programming languages?

Tokens
Java Project Version Lines Total Unique
Ant 20110123 254457 019148 27008
Batik 20110118 367293 1384554 30208
BACKGROUND Cassandra 20110122 135092 697498 13002
Eclipse-E4 20110426 1543206 6807301 98652
LogéJ 20101119 68528 247001 8056
LANGUAGE MODELS Lucene 20100310 429957 2130349 32676
Maven2 20101118 61622 263831 7637
= Probability distribution over a sequence of tokens ;4;:‘"3 53.%?55 ;1;23 135%3% ;gggg
+ Lexical models Xerces 20110111 257572 992623 19542
Tokens
" Syntactic models UbuntuDomain Version Lines Total Unique
= Semantic models R Es EARC H Admin 1010 9002325 41208531 1140555
Doc 1010 87192 362501 15373
= N-gram models: Graphics 1010 1422514 7453031 188792
A P P Ro Ac H Tnterpreters 1010 1416361 6388351 201538
T POenpERiatpEsiate). lanlatan-) et 1010 solairs aoeeoots sitage
e
. i ion: Sound 1010 1698584 20310069 436377
Markovian assumption: THE CORPORA USED Tex 1010 1405674 14342943 375845
. 1,....ai-1)~p(ailai-3,ai-2,ai~1 Text 1010 1325700 6291804 155177
plailal....ai-1)=plailai-3,ai-2,ai-1) Web 1010 1743376 11361332 216474
= Evaluation: Tokens
= Cross-entro English Corpus Version Lines Total Unique
Y Brown 20101101 81851 1161192 56057
" Perplexity Gutenberg 20101101 55578 2621613 51156

CODE VS NATURAL

LANGUAGE

REGULARITY T ‘ - = -

Java has a simpler and more
structured syntax compared to
English.

Cross entropy
8

Regular patterns (e.g., function
calls, loops) appear frequently.

©
Hypothesis: If Java's low entropy .
; is purely due to syntax, then
<7 training a model on one Java

project and testing on another L]

Cross entropy (10-fold cross validation)

S

Variable and furwctlotw names tend === é é == should yield similar results. 5 Self Cross Entropy £
to repeat, unlike the vast - - = = = = 1
vocabulary of English. A ° o ° o ° o Ant Batk Cassandra Eclipse Log4j Lucene Maven2 Maven3 Xalan—J Xerces2
L A A Corpus projects
1 2 3 4 5 6 7 8 8 10 pep

Order of n-grams

DOMAIN-SPECIFIC REGULARITY TOKEN SUGGESTION FEATURE

= Eclipse is a popular IDE used for software development, which has an in-built suggestion engine

c ithin-d . t traini d testi ithin th d in) = Corpus-Based n-gram Model (NGSE):
L ompare within-domain entropy (training and testing within the same domain).

= Asuggestion engine built using an n-gram model, which predicts the next token based on the two previous tokens entered.
= Compare cross-domain entropy (training on one domain, testing on another). = Study used a trigram model

= Findings: = Merging NGSE and ECSE:

= Projects within the same domain (e.g, networking applications) share common patterns. = Aims to balance the short suggestions from NGSE (n-gram model) and the longer suggestions from ECSE (Eclipse's built-in engine)
= Cross-domain entropy is about 1 bit higher than within-domain entropy.

= Web applications have especially low entropy, suggesting more repetitive patterns.

100

e« Percent Gain r 5000
= Raw Gain (count)
807 - 4000
@
i
= =
w60+ L3000 S
2 .]
3
The experiments were conducted £ . \ =
" -4 - (6]
on 5 different open-source 2 40+ \ . L2000 =
g a
projects: Ant, Maven, Log4J, 3 e~ o
Xalan, and Xerces. &
204 L
For each project, 40 files were set 1000
aside as a test set to evaluate the
performance. 0 0

T T T T T T T T T T T
3 4 5 6 7 8 9 1011 12 13 14 15
Suggestion length

POSITIVE POINTS

= The paper explores statistical language models for code, which laid the groundwork for tools like GitHub Copilot,
CodeT5, and Codex. This early insight into "naturalness" in code could have helped inspire deep learning-based
approaches that now dominate Al-assisted programming.

= The paper suggests that statistical models can capture different aspects of code structure (syntax, type, scope, and
semantics). Modern approaches, such as transformer-based models, have indeed shown this to be true, validating
the paper's hypothesis.

= Instead of just focusing on autocompletion, the paper explores applications in error detection, accessibility, and
machine translation of code, which are still relevant research directions.

= The idea of using statistical methods to approximate expensive static analysis tools is insightful. Even today,
researchers are trying to balance soundness with efficiency in static analysis tools.

FUTURE WORK

= |mproved language models
= Smoothing techniques
= Deep learning approaches
= Language models for accessibility
= Applications of machine translation
= Code summarization
= Code retrieval

= Software tools

NEGATIVE POINTS

= The paper briefly mentions deep learning as a possible future direction, but by 2016, neural networks were already
proving effective for natural language tasks.

= The primary approach discussed is based on n-gram language models, which are effective for local patterns but
struggle with long-range dependencies.

= The paper does not address issues like bias in training data, security risks, or ethical concerns about Al-generated
code.

= The paper does not address the computational cost of training and using such models in real-world software
engineering workflows.

RATING

4/5

DISCUSSION

= Given the paper’s focus on statistical approaches, are there cases where simple statistical methods might still be
preferable to deep learning models?

= The trade-off between speed and code quality in Al-assisted programming
= Could Al coding tools reinforce biases in software?
= Al-driven software maintenance: who will maintain Al-written code?

= |s "naturalness" in code always a good thing?

