
ON THE NATURALNESS OF SOFTWARE
ABRAM HINDLE, EARL T. BARR, MARK GABEL, ZHENDONG SU, AND PREMKUMAR DEVANBU

BACKGROUND
THE EVOLUTION OF LANGUAGE

¡ Language evolved under noise, urgency, and efficiency -> simple, repetitive, and expedient patterns

¡ History of NLP:
¡ 1960s -> rule based approaches

¡ 1970s – 1980s -> logic and formal semantics

¡ 1980s – present -> data-driven statistical approach

¡ Can NLP techniques be applied to programming languages?

BACKGROUND

¡ Probability distribution over a sequence of tokens

¡ Lexical models

¡ Syntactic models

¡ Semantic models

¡ N-gram models:
¡ p(s)=p(a1)p(a2∣a1)p(a3∣a1,a2)...p(an∣a1,...,an−1)

¡ Markovian assumption:
¡ p(ai∣a1,...,ai−1)≈p(ai∣ai−3,ai−2,ai−1)

¡ Evaluation:

¡ Cross-entropy

¡ Perplexity

LANGUAGE MODELS

RESEARCH 
APPROACH



CODE VS NATURAL 
LANGUAGE

¡ Java has a simpler and more 
structured syntax compared to 
English.

¡ Regular patterns (e.g., function 
calls, loops) appear frequently.

¡ Variable and function names tend 
to repeat, unlike the vast 
vocabulary of English.

PROJECT-SPECIFIC 
REGULARITY

¡ Hypothesis: If Java's low entropy 
is purely due to syntax, then 
training a model on one Java 
project and testing on another 
should yield similar results.

DOMAIN-SPECIFIC REGULARITY

¡ Compare within-domain entropy (training and testing within the same domain).

¡ Compare cross-domain entropy (training on one domain, testing on another).

¡ Findings:

¡ Projects within the same domain (e.g., networking applications) share common patterns.

¡ Cross-domain entropy is about 1 bit higher than within-domain entropy.

¡ Web applications have especially low entropy, suggesting more repetitive patterns.

TOKEN SUGGESTION FEATURE

¡ Eclipse is a popular IDE used for software development, which has an in-built suggestion engine

¡ Corpus-Based n-gram Model (NGSE):
¡ A suggestion engine built using an n-gram model, which predicts the next token based on the two previous tokens entered.

¡ Study used a trigram model

¡ Merging NGSE and ECSE:
¡ Aims to balance the short suggestions from NGSE (n-gram model) and the longer suggestions from ECSE (Eclipse's built-in engine)



RESULTS

¡ The experiments were conducted 
on 5 different open-source 
projects: Ant, Maven, Log4J, 
Xalan, and Xerces.

¡ For each project, 40 files were set 
aside as a test set to evaluate the 
performance.

FUTURE WORK

¡ Improved language models

¡ Smoothing techniques

¡ Deep learning approaches

¡ Language models for accessibility

¡ Applications of machine translation
¡ Code summarization

¡ Code retrieval

¡ Software tools

POSITIVE POINTS

¡ The paper explores statistical language models for code, which laid the groundwork for tools like GitHub Copilot, 
CodeT5, and Codex. This early insight into "naturalness" in code could have helped inspire deep learning-based 
approaches that now dominate AI-assisted programming.

¡ The paper suggests that statistical models can capture different aspects of code structure (syntax, type, scope, and 
semantics). Modern approaches, such as transformer-based models, have indeed shown this to be true, validating 
the paper's hypothesis.

¡ Instead of just focusing on autocompletion, the paper explores applications in error detection, accessibility, and 
machine translation of code, which are still relevant research directions.

¡ The idea of using statistical methods to approximate expensive static analysis tools is insightful. Even today, 
researchers are trying to balance soundness with efficiency in static analysis tools.

NEGATIVE POINTS

¡ The paper briefly mentions deep learning as a possible future direction, but by 2016, neural networks were already 
proving effective for natural language tasks.

¡ The primary approach discussed is based on n-gram language models, which are effective for local patterns but 
struggle with long-range dependencies.

¡ The paper does not address issues like bias in training data, security risks, or ethical concerns about AI-generated 
code.

¡ The paper does not address the computational cost of training and using such models in real-world software 
engineering workflows.



RATING

4/5

DISCUSSION

¡ Given the paper’s focus on statistical approaches, are there cases where simple statistical methods might still be 
preferable to deep learning models?

¡ The trade-off between speed and code quality in AI-assisted programming

¡ Could AI coding tools reinforce biases in software?

¡ AI-driven software maintenance: who will maintain AI-written code?

¡ Is "naturalness" in code always a good thing?


