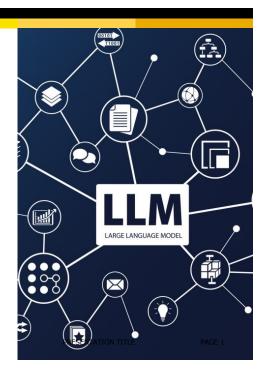
CAN LLMS REPLACE MANUAL ANNOTATION OF SOFTWARE ENGINEERING ARTIFACTS?

Presented by Tongwei Zhang



Background of the AI4SE generation (from textbook)

- Naturalness of software
 - Software exhibits simplicity and predictability akin to natural language.
 - This opens the door to statistical/NLP methods for SE tooling and practices.
- Software as human-produced text
 - Shares many statistical properties with natural language.
 - Enables numerous assistive SE applications (e.g., analysis, automation).
- Additional context
 - NLP in SE and software repository mining connect theory → practical tools that help engineers.
 - LLMs now participate in solving these problems.
- However → Core question: How much effort should LLMs contribute to SE evaluations?

PAGE 2

Problem to be solved by this paper

- ☐ Human-subject evaluations are expensive & slow
 - □ Needed for: code summarization, bug detection, static analysis usefulness, etc.
 - □ Recruiting professional developers: costly (e.g., ~\$60/hour) and time-intensive.
 - ☐ Using students risks poor generalizability.
 - □ Multiple ratings per artifact required for reliability → costs multiply.

- Need scalable, reliable alternatives
 - LLMs show strong SE task performance.
 - Challenge: When and how can LLMs safely substitute humans?

New Ideas (Empirical)

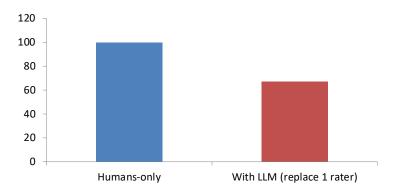
- First systematic study of LLMs as human annotation substitutes in SE
 - 6 state-of-the-art LLMs × 10 tasks × 5 datasets
 - Tasks: code summarization, name-value consistency, semantic similarity, causality detection, static-analysis warnings
 - · Compare H2H, H2M, M2M inter-rater agreement
- Model-model agreement (M2M) as predictor
 - · Strong correlation between M2M and H2M
 - · Use M2M (cheap to compute) to decide task suitability for LLM substitution.

New Ideas (Methodological)

- Model confidence for sample-level selection: use model probability to pick safe samples
- Efort-saving strategy: replace one human for 50–100% (up to ~33% savings)
- Proposed decision workflow: Step1 M2M; Step2 >0.5 replace; Step3 else highconfidence only

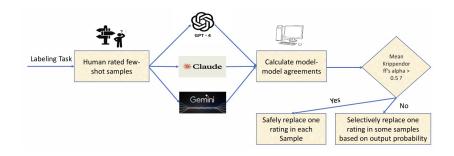
PAGE 5

Effort Savings (Illustrative)



Illustrative: replacing one of three raters \approx 33% less human effort; agreement preserved where policy applies.

VISUALIZE DECISION FLOW



PAGE 6

Positives

- Clear, evidence-based methodology
 - 10 tasks, 5 datasets; H2H/H2M/M2M comparisons \rightarrow credibility across contexts.
- Actionable decision framework
 - Policy: M2M for suitability, confidence for sample selection.
- Quantified effort savings
 - Concrete potential savings (up to 33%) while preserving reliability.

Negatives

- · Task diversity limited
 - All tasks are discrete-label annotations; generalization to open-ended/qualitative tasks unclear.
- · Training data leakage not fully addressed
 - Public datasets may be in pretraining; mitigation discussion is brief.
- No developer-centric validation
 - Agreement measured, but not whether LLM-assisted annotations improve downstream developer decisions.

PRESENTATION TITLE

PAGE 9

Rating

- 4 (Very Strong Contribution)
- A well-validated, actionable framework for reducing annotation costs in SE research, with scope currently limited to certain task types.

Future Work

- Developer-impact study
 - Integrate LLM-assisted annotations into real workflows (code review, bug triage); measure productivity, accuracy, satisfaction.
- Adaptive human–LLM collaboration system
 - Live platform computing M2M + confidence in real time; route tasks dynamically; test scalability in production.

PAGE 10

Discussion Points

- Reliability vs. Utility:
 - If LLMs match human agreement, do annotations actually improve developer tools/processes? How to measure usefulness beyond agreement?
- Ethics & Bias:
 - If LLMs inherit biased data, could substitution amplify biases in SE datasets? How to detect & mitigate?

WATERLOO

Our greatest impact happens together.

PAGE 13