
Summary Review: SOTorrent: Reconstructing and analyzing the
evolution Stack Overflow posts,

Christina Li
University of Waterloo

Waterloo, Canada
christina.li1@uwaterloo.ca

1 What is the Problem Being Solved?
The paper seeks to understand how posts on Stack Overflow (SO)
evolve over time, including changes in text and code blocks. The
paper explores three research questions: How do Stack Overflow
posts evolve? (RQ1), which posts get edited? (RQ2) and what is the
temporal relationship between edits and comments? (RQ3). Current
SO data dumps provide limited insights into version histories at a
granular level, restricts the ability to analyze how individual text or
code elements change. This hinders researchers’ and practitioners’
ability to study the quality and maintainability of knowledge shared
on SO, especially the widely used code snippets.

2 What is the New Idea they are proposing?
The authors introduce SOTorrent, an open dataset designed to
analyze the version history of SO posts at both the post and block
levels. Key features and contributions of SOTorrent include:

• Fine-grained Version History Reconstruction: SOTorrent ex-
tracts version histories for individual text and code blocks,
allowing detailed analysis of how these components evolve
over time. The dataset links different versions of a post and
tracks changes using algorithms to evaluate 134 string sim-
ilarity metrics to determine relationships between blocks
in different versions.

• Linking SO Posts to External Resources: SOTorrent con-
nects SO posts to GitHub repositories and other external
URLs by analyzing references in text blocks and source
code, providing a more comprehensive ground to under-
stand how SO evolve overtime. This enables researchers
to study how SO knowledge influences or is influenced by
other platforms.

• Insights into SO Post Evolution: The authors analyze the
dataset to answer key research questions, such as how posts
evolve, which posts are edited, and the temporal relation-
ship between edits and comments. For example, they find
that post edits are often triggered by comments and that
code changes are typically accompanied by updates to the
surrounding text.

• Dataset Availability and Tools: The authors make SOTor-
rent available on Zenodo, alongside with scripts for data
processing and analysis, encouraging further research.

3 Positive Points
• Comprehensive Dataset: SOTorrent provides granular

data on post and block evolution, which is valuable for un-
derstanding how knowledge in SO evolves. The connection
with GitHub adds another layer of utility for studying the
flow of knowledge between platforms.

• Robust Methodology: Rather than relying on a single
approach, the authors rigorously test metrics from five
categories, including edit-based, set-based, profile-based,
fingerprint-based, and equality-based methods. This com-
prehensive analysis identifies Manhattan Four-Gram Nor-
malized as the best metric for text and Winnowing Four-
Gram Dice Normalized for code.
To ensure accuracy, the study employs a three-stage evalu-
ation process, testing individual metrics, refining similarity
thresholds, and optimizing metric combinations for text
and code. The approach is validated with 600 manually
reviewed posts and assessed using the Matthews Correla-
tion Coefficient, which provides a more balanced measure
than standard precision-recall. This rigorous methodology
ensures high accuracy and reliability, making SOTorrent a
strong foundation for studying post-evolution in developer
communities.

• Actionable Insights: The paper offers practical insights,
such as the importance of comments in driving post edits
and the co-evolution of text and code, which are relevant
for improving SO’s usability and moderation practices.

4 Negative Points
• Lack of a Clear Thematic Structure The related work

section covers various topics (e.g., SO knowledge reuse, API
documentation, user behavior, source code similarity, and
software evolution), but the organization could be more
structured. It jumps between themes without clear transi-
tions, making it harder to follow how each reference con-
tributes to the context of the research.

• Minimal Discussion of Limitations in Prior Work The
paper does not fully analyze the limitations of existing
approaches. It lists studies on SO post evolution, API doc-
umentation, and source code reuse but does not critically
assess what those studies lacked and how SOTorrent ad-
dresses these gaps. A more explicit discussion of why exist-
ing datasets or tools are insufficient would strengthen the
justification for SOTorrent.

• Limited Coverage of Long-Term Evolution Trends:
While the data set provides a snapshot of post-evolution,
the article could delve deeper into long-term trends, such
as the impact of edits on the quality or relevance of posts.

• Focused on Technical Details: The paper emphasizes the
technical implementation of SOTorrent and its evaluation,
but provides relatively less discussion on how the data set
can be applied to practical problems, such as improving the
SO user experience or API documentation.



5 Future Works
Future research could use SOTorrent to analyze code snippet qual-
ity and maintenance, focusing on how code evolves in terms of
security, readability, and maintainability. By tracking changes over
time, researchers could identify patterns in which types of edit
improve code robustness and whether developers prioritize bug
fixes, performance optimizations, or style refinements. This could
lead to automated recommendations for improving code quality on
Stack Overflow, ensuring that frequently reused snippets adhere to
best-practices and security guidelines.

Another possible direction could be cross-platform analysis, par-
ticularly in understanding how knowledge flows between SO and
GitHub. Many developers copy and modify SO code in open source
projects, but the impact of these snippets on project outcomes, bug
reports, and long-term maintainability remains underexplored. By
studying how frequently SO code is adopted, modified, or aban-
doned, researchers could gain insights into best practices for knowl-
edge sharing between developer communities. This could also help
in designing better linking mechanisms between SO and GitHub,
improving traceability and citation practices for open-source con-
tributions.

6 Rating
4/5: The paper introduces a valuable dataset and robust method-
ology, making significant contributions to the study of SO post-
evolution. However, the related work section is not very well writ-
ten, and a deeper exploration of real-world applications and long-
term trends would strengthen its research aim.

7 Discussion
7.1 How can SOTorrent be used to improve SO’s

moderation and recommendation systems,
such as identifying posts most likely to need
edits or updates?

One key issue raised was that SO recommendations rely primarily
on upvotes and checkmarks, which means older posts that were
once highly rated may no longer be relevant due to evolving pro-
gramming languages or best practices. Students suggested that
SO’s recommendation algorithm should place greater weight on
newer interactions, such as recent comments, edits, and external
references. However, there was concern that if search engines prior-
itize last edit dates, users might inadvertently ignore older but still
valid posts. A student brought up programming language C as an
example which does not evolve very much over time, whereas Pro-
fessor Godfrey mentioned C++, a language that undergoes frequent
changes, suggesting older solutions could potentially be misleading.

7.2 How can we determine whether post edits
actually improve content, rather than just
making superficial changes?

It was noted that some edits may be purely superficial and that
some comments are unhelpful in terms of improving the quality of
the post, making it hard to assess the true impact of an edit. One of
the challenges discussed was that testing whether an edit improves

the code is difficult, as it requires running the code in various con-
texts, making large-scale validation impractical. Instead, alternative
approaches were suggested, including analyzing comments that
appear after an edit to check whether they validate or critique the
changes. Another idea was to log whether checkmarks appear after
an edit, which could indicate whether an update actually improves
the quality of a post.

7.3 Are there ethical concerns in tracking and
analyzing developer interactions across
different platforms?

Although this discuss point was mentioned, it was not properly
discussed which left room for future in-depth discussion when
more paper are introduced.

7.4 Other Points Discussed
Beyond these above topics, students also discussed the role of AI and
LLMs in the light of SO’s future. While SOTorrent offers structured
insights into post-evolution, the growing use of LLMs like ChatGPT
could change how developers search for and consume programming
knowledge. Some students noted that Google searches which lead to
SO, remain faster and more efficient than interacting with verbose
LLM responses, highlighting the importance of SO and researches
around SO.

Additionally, ideas for new tools and platform features were pro-
posed. One suggestion was a VSCode extension that logs the execu-
tion of SO snippets within real projects, providing implicit feedback
on snippet usability. Another proposal focused on reducing SO’s
notorious duplicate post problem by grouping related questions
under a single “main” post, similar to Quora’s model, which would
improve the contents’ discoverability and avoid fragmentation.


	1 What is the Problem Being Solved?
	2 What is the New Idea they are proposing?
	3 Positive Points
	4 Negative Points
	5 Future Works
	6 Rating
	7 Discussion
	7.1 How can SOTorrent be used to improve SO’s moderation and recommendation systems, such as identifying posts most likely to need edits or updates?
	7.2 How can we determine whether post edits actually improve content, rather than just making superficial changes?
	7.3 Are there ethical concerns in tracking and analyzing developer interactions across different platforms?
	7.4 Other Points Discussed


