
CS846 Week 3 Summary Review
Amaan Ahmed

Paper: Explaining GitHub Actions Failures with
Large Language Models: Challenges, Insights, and
Limitations [1]

Problem Being Solved
GitHub Actions is widely used as a CI/CD tool to automate testing,
building, and deployment. While powerful, its workflows fail quite
often, not only due to bugs in the code but maybe because of missing
dependencies, misconfigured environment variables, or errors in
the configuration files themselves. When failures occur, developers
are left with massive log files that are meant to explain what went
wrong and these logs are highly technical, and rarely user-friendly.
Consequently, developers often need to sift through hundreds of
lines just to find the cause of the failure. The result is therefore,
wasted time, effort and frustration before debugging can even begin
to start.

New Idea
The paper proposes the use of large language models to parse long
unstructured logs and explain failures in clear, actionable natural
language summaries. If successful, this could drastically reduce
developer effort and improve productivity.

To explore this idea, the authors start with defining what consti-
tutes a good or useful explanation. They choose four attributes and
define them as follows:

• Correctness: Are the explanations technically accurate?
• Clarity: Are the explanations easy to understand and follow?
• Conciseness: Do the explanations avoid unnecessary details
and stick to essentials?

• Actionability: Do the explanations provide clear next steps
to resolve the issue?

These attributes map directly to the three research questions (RQs):
• RQ1: To what extent do LLMs correctly describe the con-
text of GA run failures according to developers?
This question addresses correctness; are the explanations
technically sound and free from misleading information?

• RQ2: To what extent do developers find LLM generated
explanations for GA run failures clear and concise?
This question addresses clarity and conciseness; how acces-
sible are the explanations? Do the explanations contain only
essential information?

• RQ3: To what extent are the descriptions of GA run
failures considered actionable by developers?
This question addresses actionability; do the explanations
provide specific and relevant information which developers
can implement into a solution easily?

To then address these questions, the authors designed a survey-
based study combining close-ended Likert-scale questions for cor-
rectness, clarity, and concisenesswith two open-ended questions
to collect free-text feedback and assess actionability. This mix

provided a balance of both structured, quantitative data and quali-
tative insights, minimizing the authors’ own bias and involvement
in data collection.

Next, to deliver this survey in a consistent and unbiased way, the
authors built their own platform, LogExp. This meant that every
participant viewed logs, explanations and answered the survey
questions in the exact same manner, ensuring consistency that
reduced presentation bias and streamlined the process.

For the choice of model to generate the explanations, the authors
ran a pilot study testing LLaMA2, LLaMA3, and Mixtral under
different prompting strategies (zero-shot, one-shot, few-shot). They
settled on LLaMA3with one-shot prompting, finding it produced
the best balance of accuracy and simplicity.

Results-wise, for RQ1 (correctness), results were strongly posi-
tive. Over 80% of participants agreed that explanations were accu-
rate, logically coherent, and precise enough to diagnose failures. For
RQ2 (clarity and conciseness), again ∼ 80% rated explanations
as clear and easy to follow, while conciseness was slightly weaker
(∼ 74.5%). For RQ3 (actionability), results were mixed and more
nuanced. The authors derived five sub-attributes of actionability
from qualitative responses:

• Clarity of Explanation:
If the explanation was confusing or used vague language, it couldn’t
really help them act on it.

• Actionable Guidance:
A good explanation might point to installing a missing dependency
or updating a configuration, instead of simply repeating the error
message.

• Specificity of Content:
Generic statements were useless, while context-specific ones were
appreciated.

• Contextual Relevance:
Including details like defined dependencies or links to external docu-
mentation made explanations more helpful.

• Conciseness:
Explanations should be brief and to the point; avoid fluff and unnec-
essary details.

Positive Points
• I liked the paper’s potential impact. LLMs can greatly reduce
human effort when dealing with error logs, and this research
could inspire similar efforts on other kinds of large, unstruc-
tured data.

• I thought the paper took a very systematic approach. The
authors first defined attributes to judge the explanations and
these attributes then tied in seamlessly with the research ques-
tions. It made the whole study structured and easy to follow.

• I also liked how the evaluation was consistent and balanced.
By mixing close-ended and open-ended questions, the authors
reduced their own bias while still collecting richer insights. A
big strength for me was the LogExp tool. Building their own
platform showed commitment to fairness and consistency.

• The inclusion of a dedicated section for defending the valid-
ity of the paper was interesting to see. The authors actually



CS846, September 2025, Waterloo, ON, Canada Ahmed, Amaan

thought carefully about the limitations and possible criticisms
of their design. For example, they acknowledged issues like
the small response rate and other ways the survey could have
been designed. But at the same time, they gave clear reasoning
for why they made the choices they did. To me, this section
showed self-awareness and honesty, which makes the paper
much stronger.

• Finally, I liked that the authors provided a replication package
with raw data and setup files. This makes it easier to repli-
cate and verify the work done, increasing transparency and
reliability.

Negative Points
• The response rate was extremely low. Out of 811 developers
contacted, only 31 responded, and only those surveys that
were at least 70% complete were included. This makes the final
sample size not only small but also somewhat indeterminate,
since we don’t know exactly how many full responses were
analyzed. Greater clarity here would have strengthened the
results.

• The paper frames the problem as massive, unstructured logs
that are hard to parse. Yet the examples shown in the paper
were relatively simplified, not the overwhelming ’log swamps’
developers typically face. It is also unclear whether the LLMs
were run on entire log files or just the curated portions dis-
played in LogExp. More detail on this process would have
been valuable.

• The participant pool may have biased the results. The study
specifically recruited skilled developers with prior experience
handling GitHub Actions failures, and some had contributed
to projects from which the failures were sourced. This raises
the possibility that participants already knew the root causes
before reading the explanations, inflating correctness and ac-
tionability scores. Including less experienced developers, or
experienced developers who had not worked on the failures,
could have provided more balanced insight into whether the
explanations truly aid understanding.

Future Work
• A more representative pool of developers could give stronger
evidence and including less experienced developers could pro-
vide the opportunity to learn from their unique feedback too.

• Another direction would be to test fine-tuned LLMs that are
trained specifically on CI/CD logs. The models used here were
general-purpose, which is why they sometimes performed
poorly. A specialized model might improve correctness and
actionability.

• It would be interesting to extend this research beyond GitHub
Actions. Other CI/CD tools like Jenkins or Azure Pipelines
also produce massive logs. Testing across different platforms
would show whether this approach generalizes.

Rating
4, great and intuitive application of LLMs to make life easier.

Discussion Points
• Can LLMs be trusted for this task if they sometimes give
confident but wrong or misleading explanations?

How do we mediate this? What sort of manual intervention can
help but maintain reduced effort?
Brian mentioned the inclusion of a feature that could show the
’chain-of-thoughts’ behind a LLM’s explanation. This would in-
crease transparency as well as allow the developer to evaluate
the LLM’s thought process and see if, and where, the LLMmay
have made a mistake. Jacie proposed the use of SWE-agent
to assist developers with this issue, while Tongwei suggested
leveraging multi-models for cross-verification.

• Is conciseness more important than actionability?
What trade-offs can we feasibly undertake here?
I was of the opinion that these two attributes were a bit con-
flicting since if we have a situation where an LLM-generated
explanation contains a lot of actionable steps to solve the prob-
lem, this reduces conciseness. Vice versa, if we reduce the
number of steps to improve conciseness, actionability may
diminish. The ideal solution would be to find a balance be-
tween the two but how exactly? To this, Youssef suggested the
provision of a concise suggestion of steps to the developers
but also providing the developer with an option to expand for
more detail. Having this option would cater to both novice
and experienced developers. Felix agreed that different de-
velopers with different levels of experience would naturally
have different needs and preferences. He remarked that the
trade-off between conciseness and actionability depends on
the complexity of the job or steps suggested to resolve the
failure. Simpler jobs requiring short scripts would demand
conciseness while more complex jobs would require elabora-
tion for actionability. Asim commented that solving GA run
failures is not for everyone and only experienced developers
would be needing the use of such a tool. Thus, his opinion
was that this trade-off really depended on a defined goal for
the tool; if experienced developers are to use this tool, then
surely their needs are more important and such developers
often value conciseness.

• How do we balance the risk of developer over-reliance
on LLMs versus their productivity benefits?
Developers already employ LLMs to generate code, will this affect
their debugging skills as well? What skills would developers
require then?
Similar to last week’s discussion on the evolving role of a
software developer, this point questioned how skills will shift
if even debugging is delegated to LLMs. In my view, one thing
that makes a developer strong is their debugging skills and
ability to look through lines of code (or text) and figure out
what’s wrong. Developers already utilise LLMs in generating
code so if LLMs take over debugging as well, what will remain
for us, and what new skills must we develop? Jacie noted that
the professional world demands skills and adaptability, where
developers are trained to have skills sufficient to perform well
in this world. The introduction of such tools would then mean
developers would need to learn how to decide when, and how,
to use which tools. Kevin agreed, adding that as technology
evolves and times change, so must the skills of developers,
with prompt engineering increasingly becoming an essential
competency.



CS846 Week 3 Summary Review CS846, September 2025, Waterloo, ON, Canada

References
[1] Pablo Valenzuela-Toledo, Chuyue Wu, Sandro Hernandez, Alexander Boll, Roman

Machacek, Sebastiano Panichella, and Timo Kehrer. 2025. Explaining GitHub Ac-
tions Failures with Large Language Models: Challenges, Insights, and Limitations.

arXiv:2501.16495 [cs.SE] https://arxiv.org/abs/2501.16495

https://arxiv.org/abs/2501.16495
https://arxiv.org/abs/2501.16495

	References

