Explaining GitHub Actions Failures
with Large Language Models

Challenges, Insights and Limitations

Pablo Valenzuela-Toledo, Chuyue Wu, Sandro
Hernandez, Alexander Boll, Roman Machacek,

Sebastiano Panichella, Timo Kehrer

Date Published: April 2025
Presented by: Amaan Ahmed

New Idea

Metrics and Research Questions

® To what extent do LLMs correctly describe the context of
GA run failures according to developers?

o Are the explanations technically sound?

® To what extent do developers find LLM generated
explanations for GA run failures clear and concise?

o How understandable are the explanations? Do the
explanations contain only essential information?

e To what extent are the descriptions of GA run failures
considered actionable by developers?

o Do the explanations provide specific and relevant
information which developers can implement into a

solution easily?

010

TABLE I
ATTRIBUTES USED FOR EVALUATING LLM-GENERATED

EXPLANATIONS OF GITHUB ACTIONS RUN FAILURES [17], [18].

Attribute Definition

Measures the accuracy and reliability of the
LLM-generated explanations in describing the
Correctness actual behavior of the system, ensuring infor-
mation is free from misleading content and
inspires confidence in the diagnosis provided.

Reflects whether the explanation is efficient
and avoids unnccessary information, present-
ing only essential details to understand and
resolve the issue effectively.

Conciseness

Assesses whether the explanation is presented
in a clear and understandable manner, enabling
developers to readily grasp the issue and the
suggested steps.

Clarity

Assesses whether the explanation provides
clear, step-by-step guidance that is directly im-
enabling pers to efficiently
address and resolve the failure without needing
further clarification or external resources.

Problem Being Solved

e GitHub Actions = Continuous Integration / Continuous Deployment Automations.

o Runs workflows whenever code is pushed, to test, build, and deploy software.

® Frequent failures.

o Workflows often fail, causes can be misconfigurations, hidden dependencies or environment issues.

® Debugging is difficult.
o Error logs are long, unstructured and not user-friendly.

® Time-consuming and frustrating.

o Developers must scroll through and make sense of hundreds of lines of output to figure out what's wrong.

is faster and more efficient?

New Idea
Survey Study

e Developers shown GA run failure logs with LLM-generated
explanations.

® Developers asked to evaluate explanations through close-
ended questions and open-ended questions.

o Close-ended questions to answer RQ1 and RQ2, through
a Likert Scale Rating (Strongly Agree - Neutral - Strongly
Disagree)

o Open-ended questions to answer RQ3, through free-text
e Authors invited 811 developers, 31 responded back.

o Responses for Questions 11 and 12 were then manually
categorised by the authors with respect to themes/sub-
attributes.

Question: Can LLMs help explain these failures in the form of natural summaries, so debugging

RQ1 R

-~

Survey Statements & Questions
(@) The explanation accurately reflects the details
and context of the GitHub Actions run failure.
(2) The run failure explanation is helpful.
(@) There is a low likelihood of a misleading expla-
nation.
(@) The explanation accurately diagnoses the run
failure.
(8) The explanation contains no inappropriate or
incorrect content.
(6) There is evident sound diagnostic reasoning.
(@) The ion clearly and und dably com-
municates the run failure.
(8) The explanation clearly outlines the subsequent
steps to take.
(9 The explanation specifically addresses my needs
without being too general.

(10) I am confident in the diagnosis provided by the

run failure explanation.

*(11) What attributes make an error explanation valu-
able and effective for addressing issues related to
GitHub Actions runs?

*(12) Do you have any additional comments or sug-

gestions on how we can enhance our run failure

\ explanations?

New Idea
Survey Tool

e Custom-built platform called LogExp, to conduct the survey efficiently and uniformally.

e Displayed the log and static LLM
explanations side by side.

Error response fron daenon: manifest for medicmobile/cht-

The error message “Error response from daenon: manifest for
7

haproxy:4.7. 0-depent P ap
b12866d120. 9137105888 not found: manifest unknown:
manifest unknown

1) "before all" hook: beforeALL in "{root}"

® Reduced bias and ensured
structured evaluation. 1 faiting

tring "Error response from daenon

manifest for medicnobile/cht-haproxy:4.7.0-dependabot-npm-
and-yarn-webapp-angular-b1a866d120.9137105888 not found:
manifest unknown: manifest unknown\n" was thrown, throw an

Error 1)

##lerror]Process completed with exit code 1.

Fig. 2. Partial view of the LogExp tool’s interface. The log is displayed on the left, allowing participants to choose between viewing
or the full log. On the right, the corresponding textual explanation generated by the LLM is presented. Below these sections,

p-angular-

12866120, 9137105888 not found: manifest unknown: manifest unknown”
indicates that the Docker daenon was unable to find the specified
Docker inage on the remote registry.

This error typically occurs when the Docker isage you are trying to
PULL or use does not exist in the specified registry or repository. In
this case, the inage "medicrobile/cht-haproxy: 4.7 .0-dependabot-npn-and-|
yarn-webapp-angular-b1a8664120.9137105888° could nat be found on the
Docker Hub registry.

Possible solutions:
1. sxverify the inage nase and tag+: Double-check the inage nane and
tag to ensure they are correct. The tag "4.7.0-dependabot-npa-and-yarn-
webapp-angu lar-b1a8664120.,9137105888" seens to be a non-standard tag,

Which might not exist in the repository.

2. sCheck if the inage existsws: Visit the Docker Hub repository

(https: //hub. docker . con//medicnobi le/cht-haproxy) and check if «».i

a
participants encountered statements and questions specific to each case.

Results
Research Question 3

e To address actionability, the authors defined 5 categories/sub-attributes.

e Clarity of Explanation:
o Was the explanation written clearly enough to be followed?
e Actionable Guidance

o Did the explanation suggest a fix or concrete step on what the developer
should do next?

e Specificity of Content

o Was the explanation targeted to the actual error, or just a general
comment?

e Contextual Relevance

o Did the explanation provide additional context or external links to
resources that may help understand the problem more fully?

e Conciseness

o Was the explanation brief yet informative? Were the solution steps
concisely presented?

Answer to RQ3

Effective explanations for GitHub Actions run
failures include five key attributes: clarity, which
provides straightforward information; actionable
guidance, offering precise steps for resolution;
specificity, adapting explanations to the techni-
cal context; contextual relevance, adding links
o details about dependencies; and conciseness,
ensuring only essential information is presented.

661 believe that a useful error explanation should
get straight to the point without saying a lot of
y things. Furthe 1l /! i
should be easily understandable by people that
are just getting started so they can become better
at understanding errors. Last but not least the
steps to fix the issue shouldn’t be too general
because then a google search is better. [ID:5]"

&€ 1. Cutting fluff, going straight to the point. 2.
Possible steps to take to fix the problem. [ID:2]”

Results
Research Question 1 and 2
® Correctness ~ 80%+ agreement

o Most developers found explanations accurate, logically coherent
and precise.

e Clarity and Conciseness ~ 75% - 80% agreement

o Over 80% of the participants found the explanations easy to
understand.

o ~75% of the participants found the explanations specific, and not
overly broad with unnecessary details.

Positives

® Great potential for LLMs to reduce human effort.

g
8
®
= == m=

2

100 7 0 2

B Fuly Agroo @ Agroo Noutnl ™ Disagroe 1 Stongly Disagreo

Fig. 3. The stacked bar chart shows the levels of agreement of
ts to our statements (1), (3), (4), (5), and (6).

« TN T
« T
« TN 1
.- B
wo IEEENETI W

H

7 FY 2

W Fuly Agreo M Agroe ' Neural ' Disagroe ' Strongly Disagroo

Fig. 4. The stacked bar chart shows the levels of agreement of
participants to our statements (2), (7), (8), (9), and (10).

o Not just error logs, but this research can inspire efforts to summarise other large volume unstructured data.

e Systematic approach, attributes tie in with research questions seamlessly.

o Clear structure to the paper, methodology was easy to follow.

e Consistent evaluation with balanced design and reduced bias.

o Custom-built LogExp tool and data collected through both close-ended statements and open-ended gs.

® Separate section for defending validity.

o Authors go into depth about their design choices and provide reasonings in defence.

Replication package and raw data provision.

o The work can be replicated and verified.

Negatives

® Very low response rate and indeterminant sample size.
o 31 out of 811 developers responded. Authors chose responses that were at least 70% completed.
® Logs presented were simplified, not real unstructured log swamps.
o The examples included in the paper are of very simple logs, not logs awash in a text swamp.
® Unclear if LLMs ran on full logs or separated excerpts.
o The tool only present an explanation of a particular log, it is not clear whether it was provided a single log

or the entire unstructured log.

e Participant selection bias.

o Only skilled developers with prior experience in handling GA run failures were selected.

Rating: 4/5

Great application of LLMs to make human life easier.

Future Work

® Increase sample size and participant diversity.
o Include less experienced developers and learn from their feedback.
® Test on realistic, unstructured log ‘swamps’.
o Token limit could be an issue here.
e Explore fine-tuned LLMs trained on CI/CD data.
o The paper identifies poor performance on CI/CD data with the general LLMs used.
e Extend beyond GitHub Actions to other CI/CD tools.

o Jenkins, Azure DevOps, Azure Pipelines.

Discussion Points

e Can LLMs be trusted for this task if they sometimes give confident but wrong or
misleading explanations?

o How do we mediate this? What sort of manual intervention can help but maintain reduced effort?
® [s conciseness more important than actionability?
o What trade-offs can we feasibly undertake here?

® How do we balance the risk of developer over-reliance on LLMs versus their
productivity benefits?

o Developers already employ LLMs to generate code, will this affect their debugging skills as well? What
skills would developers require then?

Thank you.

