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Problem Being Solved 
The most central conjecture of this paper is that “Most 
software is also natural (like other natural languages)”, in 
the sense that it contains attendant constraints and 
limitations of human work and thus is repetitive and 
predictable. The author of this paper wants to use a 
statistical language model called n-gram to model the 
coding languages in Java, C, and Python and compare it 
with the results trained on natural language corpora like 
Gutenberg and Brown. They also want to utilize the n-gram 
model to build an Eclipse Plug-in suggestion engine and 
evaluate whether it’s useful to developers.  
New Idea 
The author wants to use a statistical language model to 
prove the repetitiveness and predictability of code, and 
because the repetitiveness and predictability appear on the 
lexical level, syntactic level, and semantic level, statistical 
language models are capable of doing so.   
The author used Brown and Gutenberg corpora for natural 
languages, and Java projects, Ubuntu applications in C, after 
removing all human comments for the code, and then 
trained them by 10-fold cross-validation training, which 
randomly selected 90% of the data for training and 10% of 
the data for validation. One drawback of such a model is the 
sparsity, which the author used a fall-back to the (n-1)-gram 
technique if the probability of an n-gram is 0, and used a 
smoothing method. The metric used by this paper is the 
cross-entropy loss, which measures how confident the 
language model is able to guessing the next word.  
By training such an n-gram model on Java projects, they 
found that Java contains a lot of local repetitiveness, and 
software is far more regular than English. And by training a 
trigram model on 10 different Java projects, respectively, 
they found that each project has its own type of local and 
non-Java-specific regularity. And by training the n-gram 
model on Ubuntu applications across 10 domains, they 
found that a lot of local regularity is repeated within 
application domains, and much less so across domains.  
They designed a heuristic algorithm called MSE, which 
combined their n-gram model suggestion (NGSE) engine 
with Eclipse’s built-in suggestion engine(ECSE). If ECSE 
has long tokens within the top n, then take ECSE’s top n 
offers, or if not, then half NGSE, half ECSE. And in 
practice, this is proven to save more keystrokes than ECSE. 
Positive Points 
One positive point about this paper is that I like the choice 
of the n-gram model. It’s deterministic and explainable, but 
many language models based on optimization algorithms are 

not. Since the scope of this paper is to prove that software is 
repetitive and explainable, it’s good to choose something 
deterministic and explainable.  
The second thing is that this paper has very strong empirical 
evidence. It used some large and real-world datasets which 
contain 10 major Java projects, 10 Ubuntu domains of C 
applications, and 2 large-scale natural language corpora 
(Brown: ~1 million words, Gutenberg: ~2.5 million words), 
and used a rigorous procedure of 10-fold cross-validation, 
which provides robust and strong empirical evidence.  
Negative Points 
One thing I don’t like is that though repetition does mean 
regularity, it’s not always a good sign in software 
engineering. The paper lacks preprocessing on the codebase 
that ensures the quality of code, including whether it 
contains legacy code, whether it contains code that follows 
poor coding practices that cause redundancy.  
The MSE algorithm is too superficial. We already have 
ECSE, which is based on type information, and NGSE, 
which has statistical patterns, we are able to build something 
better on top of them, not simply choose one or another.  
The next thing is the limitations of N-gram. Although the n-
gram model is able to catch some local grammatical 
structures, it’s unable to catch any long grammatical 
structures, and cannot give any long suggestions.  
Also, the author illustrated “most software is also natural”, 
and inferred that “it’s also likely to be repetitive and 
predictable” from there. But this is not a sufficient and 
necessary condition, we are not able to infer backwards 
from “proving that software is repetitive and predictable” to 
“proving that software is natural”.  
Future Work 
A Probabilistic Context Free Grammar (CFG) is a concept 
related to traditional NLP, aiming to capture the grammatical 
structure of natural languages and construct an abstract 
syntax tree of what grammar is allowed in the training data, 
along with the training process, and label the probability of 
each possibility. The n-gram model can work with PCFG in 
the field of traditional NLP, and what I’m proposing is to 
incorporate these two together and let the n-gram model be 
capable of catching complicated grammar in code, and 
repeat the procedure of this paper again to see if the model 
catches something new.  
Rating 
3.5/5. I think it’s a good paper, but not life-changing. The 
idea of naturalness of this paper is novel, and the work being 
done is rigorous, but the reliance on the n-gram model limits 
its ability to catch something more in-depth.  



Discussion Points 
1. With the transformer architecture coming out, everything 
about language models, computer vision, speech 
recognition, and machine translation changes fundamentally. 
For the future directions section (section 6), which direction 
do you think becomes irrelevant, and which direction do you 
think becomes more relevant and realistic? 
 
One student that this paper talks about deep learning very 
briefly and doesn’t really capture how powerful language 
models were going to be in the future, and he believes that 
this paper underestimated the strength of corpus-based 
learning.  
Prof. Godfrey talked about how this paper was the first one 
that used a language-model-based technique of that kind, 
and it worked. The n-gram was simple and easy to prove, 
and the data showed that it’s possible. This technique was 
simple and straightforward, and this idea is solid for its time. 
It proved the possibility of using AI to do software tasks.  
For me, I think direction 6.1 is still solid, the trade-off 
between model capacity and sparsity is still an issue even 
now. Even advanced models like GPT-5 need to do a lot of 
downstream fine-tuning for sparsity issues. 6.1-6.3 is not 
relevant anymore with the advancement of deep learning. 
These are basically “solved” or “nearly solved” problems by 
using deep learning, and have no point in using the Naïve 
Bayes proposed in this paper. 6.4 is the current trend, 
although it went way beyond what Dr. Hindle could have 
imagined back then. This paper provided a perfect 
theoretical foundation for the emergence of later models.  
 
2. The N-gram-based Eclipse plug-in showed 27–61% 
improvement in code suggestion. And the measure used is 
the number of keystroke savings. Do you think this result 
convincingly demonstrated practical benefits, or is it more 
of a proof-of-concept? What makes you think it indicates 
practical benefits? Or what follow-up study could be done to 
make it more convincing? 
 
One student mentioned that she believes that, over time, 
even if they are small, productive jumps, they could show 
improvements more significantly in productivity.  
Another student talked about how he would have liked to 
see optimized code versus just code completion coming 
from the n-gram. This would be more helpful than simply 
code suggestions.  
My take on this is that the measure of keystrokes, though 
not convincing enough, is definitely better than a proof-of-
concept. But a follow-up case study with a controlled 
experiment on the result of work by professional developers 
using this tool, or without using this tool, is more 
convincing. 
 

3. Should “Quality of Code” play into our proof for 
naturalness? If yes, how can we incorporate it? If no, please 
justify it. 
 
One student argues that the regularity in the project was 
more obvious, even if it’s not the “best” code. The n-gram 
picking up on that would be a good thing, potentially, 
regardless of code quality. Another student believes code 
consistency is far more important than other quality 
measures.  
The professor explained how the industry standards help to 
standardize the way developers write code. He suggested 
that in the project, you would expect there to be even more 
regularity.  
My opinion is that we don’t necessarily need to let the 
quality of code be a metric when proving the naturalness of 
software. But if we are actually applying it in practice, it’s 
better to ensure the model is learned on training data with 
good coding practices.  
 
4. If we now have Eclipse’s built-in suggestion engine and 
N-gram model suggestion engine (NGSE) both in hand, how 
could we build something potentially better than MSE? 
 
Prof. Godfrey talked about throwing out special cases and 
just going hard with statistical analytics. He talked about 
how the data is really what can drive better performance.  
A student mentioned that the linguistics community still 
don’t have a definition of what a word is.  
My personal opinion on this is that I think first we could 
combine the PCFG context tree that I introduced in the 
future works section, and combine it with some search 
engine or recommendation engine kind of thing built with 
deep learning algorithms on top of these two.  
 
5. Any disagreement or agreement with my critiques before? 
Do you have other positives or negatives that you want to 
share? 
 
One student talked about his confusion with token length 
and questioned whether the length of a token would affect 
its probability in the n-gram model. Another student shared 
his explanation of what he thought the tokenization 
technique could entail, but I don’t have enough expertise to 
keep this conversation going further.  


