CS846 Week 3 Reviews
Felix Wang

Problem Being Solved

The most central conjecture of this paper is that “Most
software is also natural (like other natural languages)”, in
the sense that it contains attendant constraints and
limitations of human work and thus is repetitive and
predictable. The author of this paper wants to use a
statistical language model called n-gram to model the
coding languages in Java, C, and Python and compare it
with the results trained on natural language corpora like
Gutenberg and Brown. They also want to utilize the n-gram
model to build an Eclipse Plug-in suggestion engine and
evaluate whether it’s useful to developers.

New Idea

The author wants to use a statistical language model to
prove the repetitiveness and predictability of code, and
because the repetitiveness and predictability appear on the
lexical level, syntactic level, and semantic level, statistical
language models are capable of doing so.

The author used Brown and Gutenberg corpora for natural
languages, and Java projects, Ubuntu applications in C, after
removing all human comments for the code, and then
trained them by 10-fold cross-validation training, which
randomly selected 90% of the data for training and 10% of
the data for validation. One drawback of such a model is the
sparsity, which the author used a fall-back to the (n-1)-gram
technique if the probability of an n-gram is 0, and used a
smoothing method. The metric used by this paper is the
cross-entropy loss, which measures how confident the
language model is able to guessing the next word.

By training such an n-gram model on Java projects, they
found that Java contains a lot of local repetitiveness, and
software is far more regular than English. And by training a
trigram model on 10 different Java projects, respectively,
they found that each project has its own type of local and
non-Java-specific regularity. And by training the n-gram
model on Ubuntu applications across 10 domains, they
found that a lot of local regularity is repeated within
application domains, and much less so across domains.
They designed a heuristic algorithm called MSE, which
combined their n-gram model suggestion (NGSE) engine
with Eclipse’s built-in suggestion engine(ECSE). If ECSE
has long tokens within the top n, then take ECSE’s top n
offers, or if not, then half NGSE, half ECSE. And in
practice, this is proven to save more keystrokes than ECSE.
Positive Points

One positive point about this paper is that I like the choice
of the n-gram model. It’s deterministic and explainable, but
many language models based on optimization algorithms are

not. Since the scope of this paper is to prove that software is
repetitive and explainable, it’s good to choose something
deterministic and explainable.

The second thing is that this paper has very strong empirical
evidence. It used some large and real-world datasets which
contain 10 major Java projects, 10 Ubuntu domains of C
applications, and 2 large-scale natural language corpora
(Brown: ~1 million words, Gutenberg: ~2.5 million words),
and used a rigorous procedure of 10-fold cross-validation,
which provides robust and strong empirical evidence.
Negative Points

One thing I don’t like is that though repetition does mean
regularity, it’s not always a good sign in software
engineering. The paper lacks preprocessing on the codebase
that ensures the quality of code, including whether it
contains legacy code, whether it contains code that follows
poor coding practices that cause redundancy.

The MSE algorithm is too superficial. We already have
ECSE, which is based on type information, and NGSE,
which has statistical patterns, we are able to build something
better on top of them, not simply choose one or another.
The next thing is the limitations of N-gram. Although the n-
gram model is able to catch some local grammatical
structures, it’s unable to catch any long grammatical
structures, and cannot give any long suggestions.

Also, the author illustrated “most software is also natural”,
and inferred that “it’s also likely to be repetitive and
predictable” from there. But this is not a sufficient and
necessary condition, we are not able to infer backwards
from “proving that software is repetitive and predictable” to
“proving that software is natural”.

Future Work

A Probabilistic Context Free Grammar (CFG) is a concept
related to traditional NLP, aiming to capture the grammatical
structure of natural languages and construct an abstract
syntax tree of what grammar is allowed in the training data,
along with the training process, and label the probability of
each possibility. The n-gram model can work with PCFG in
the field of traditional NLP, and what I’'m proposing is to
incorporate these two together and let the n-gram model be
capable of catching complicated grammar in code, and
repeat the procedure of this paper again to see if the model
catches something new.

Rating

3.5/5. 1 think it’s a good paper, but not life-changing. The
idea of naturalness of this paper is novel, and the work being
done is rigorous, but the reliance on the n-gram model limits
its ability to catch something more in-depth.



Discussion Points

1. With the transformer architecture coming out, everything
about language models, computer vision, speech
recognition, and machine translation changes fundamentally.
For the future directions section (section 6), which direction
do you think becomes irrelevant, and which direction do you
think becomes more relevant and realistic?

One student that this paper talks about deep learning very
briefly and doesn’t really capture how powerful language
models were going to be in the future, and he believes that
this paper underestimated the strength of corpus-based
learning.

Prof. Godfrey talked about how this paper was the first one
that used a language-model-based technique of that kind,
and it worked. The n-gram was simple and easy to prove,
and the data showed that it’s possible. This technique was
simple and straightforward, and this idea is solid for its time.
It proved the possibility of using Al to do software tasks.
For me, I think direction 6.1 is still solid, the trade-off
between model capacity and sparsity is still an issue even
now. Even advanced models like GPT-5 need to do a lot of
downstream fine-tuning for sparsity issues. 6.1-6.3 is not
relevant anymore with the advancement of deep learning.
These are basically “solved” or “nearly solved” problems by
using deep learning, and have no point in using the Naive
Bayes proposed in this paper. 6.4 is the current trend,
although it went way beyond what Dr. Hindle could have
imagined back then. This paper provided a perfect
theoretical foundation for the emergence of later models.

2. The N-gram-based Eclipse plug-in showed 27-61%
improvement in code suggestion. And the measure used is
the number of keystroke savings. Do you think this result
convincingly demonstrated practical benefits, or is it more
of a proof-of-concept? What makes you think it indicates
practical benefits? Or what follow-up study could be done to
make it more convincing?

One student mentioned that she believes that, over time,
even if they are small, productive jumps, they could show
improvements more significantly in productivity.

Another student talked about how he would have liked to
see optimized code versus just code completion coming
from the n-gram. This would be more helpful than simply
code suggestions.

My take on this is that the measure of keystrokes, though
not convincing enough, is definitely better than a proof-of-
concept. But a follow-up case study with a controlled
experiment on the result of work by professional developers
using this tool, or without using this tool, is more
convincing.

3. Should “Quality of Code” play into our proof for
naturalness? If yes, how can we incorporate it? If no, please
justify it.

One student argues that the regularity in the project was
more obvious, even if it’s not the “best” code. The n-gram
picking up on that would be a good thing, potentially,
regardless of code quality. Another student believes code
consistency is far more important than other quality
measures.

The professor explained how the industry standards help to
standardize the way developers write code. He suggested
that in the project, you would expect there to be even more
regularity.

My opinion is that we don’t necessarily need to let the
quality of code be a metric when proving the naturalness of
software. But if we are actually applying it in practice, it’s
better to ensure the model is learned on training data with
good coding practices.

4. If we now have Eclipse’s built-in suggestion engine and
N-gram model suggestion engine (NGSE) both in hand, how
could we build something potentially better than MSE?

Prof. Godfrey talked about throwing out special cases and
just going hard with statistical analytics. He talked about
how the data is really what can drive better performance.
A student mentioned that the linguistics community still
don’t have a definition of what a word is.

My personal opinion on this is that I think first we could
combine the PCFG context tree that I introduced in the
future works section, and combine it with some search
engine or recommendation engine kind of thing built with
deep learning algorithms on top of these two.

5. Any disagreement or agreement with my critiques before?
Do you have other positives or negatives that you want to
share?

One student talked about his confusion with token length
and questioned whether the length of a token would affect
its probability in the n-gram model. Another student shared
his explanation of what he thought the tokenization
technique could entail, but I don’t have enough expertise to
keep this conversation going further.



