
ON THE NATURALNESS OF SOFTWARE

Felix Wang,
David R. Cheriton School of Computer Science

-- Dr. Abram Hindle et al. PROBLEM TO BE SOLVED

On the naturalness of Software PAGE 2

Conjecture

 Most software is also natural (like other natural languages).

§ What does natural mean?

On the naturalness of Software PAGE 3

Attendant
constraints and
limitations of
human work.

• Repetitive

• Predictable

• Code can be modelled
by statistical language
models.

• Such models are useful.

N-gram: A statistical Language Model

Code (in Java, C, Python)

Eclipse Plug-in

On the naturalness of Software PAGE 4

Problem to be solved

Model

• Code can be modelled
by statistical language
models.

• Such models are useful.
 Build

NEW IDEA

On the naturalness of Software PAGE 5

Repetitiveness & Predictability

On the naturalness of Software PAGE 6

§ Why are language models useful for this scenario?

Because Repetitiveness & Predictability appear on:

1. Lexical level -> Token sequences

2. Syntactic level -> Grammatical structures

3. Semantic level -> Probabilistic

Statistical
Language

Model

N-gram

On the naturalness of Software PAGE 7

§ Example paragraph:

I like pink dresses. I like pink. I do not like dresses. I like green.

3-gram example

On the naturalness of Software PAGE 8

§ Tokenize:

<s> <s> I like pink dresses </s> </s>

<s> <s> I like pink </s> </s>

<s> <s> I do not like dresses </s> </s>

<s> <s> I like green </s> </s>

<s>: start symbol of a sentence.
</s>: end symbol of a sentence.

3-gram example

On the naturalness of Software PAGE 9

Count all possible trigrams:

<s> <s> I: 4

<s> I like: 3

I like pink: 2

I like green: 1

I do not: 1

……

<s> <s> I like pink dresses </s> </s>

<s> <s> I like pink </s> </s>

<s> <s> I do not like dresses </s> </s>

<s> <s> I like green </s> </s>

<s>: start symbol of a sentence.

</s>: end symbol of a sentence

3-gram example

On the naturalness of Software PAGE 10

Predicting the next word of a sentence:

I like …

P(pink|I,like) = 2/3

P(green|I,like) = 1/3

So next word is more likely to be pink.

<s> <s> I like pink dresses </s> </s>

<s> <s> I like pink </s> </s>

<s> <s> I do not like dresses </s> </s>

<s> <s> I like green </s> </s>

<s> <s> I: 4

<s> I like: 3

I like pink: 2

I like green: 1

I do not: 1

……

3-gram example

On the naturalness of Software PAGE 11

§ Sparsity:

I like dresses.

It’s a perfectly valid sentence, but:

P(dresses|I,like) = 0

Since there was not enough learning
data.

<s> <s> I like pink dresses </s> </s>

<s> <s> I like pink </s> </s>

<s> <s> I do not like dresses </s> </s>

<s> <s> I like green </s> </s>

<s> <s> I: 4

<s> I like: 3

I like pink: 2

I like green: 1

I do not: 1

……

N-gram

On the naturalness of Software PAGE 12

Solution:

1. Fall back to (N-1)-gram if the
probability of N-gram is 0.

2. Kneser-Ney Smoothing:

An easy smoothing example (Laplace):

! = #$%&'()*' + 1
-&#*%.#()*' + /.0&	*2	3*4(5$6('7

<s> <s> I like pink dresses </s> </s>

<s> <s> I like pink </s> </s>

<s> <s> I do not like dresses </s> </s>

<s> <s> I like green </s> </s>

<s> <s> I: 4

<s> I like: 3

I like pink: 2

I like green: 1

I do not: 1

……

N-gram

On the naturalness of Software PAGE 13

Metrics:

Cross-entropy Loss/Log-transformed
perplexity:

Rationale: How “confident” the
language model is able to guess the
next word.

<s> <s> I like pink dresses </s> </s>

<s> <s> I like pink </s> </s>

<s> <s> I do not like dresses </s> </s>

<s> <s> I like green </s> </s>

<s> <s> I: 4

<s> I like: 3

I like pink: 2

I like green: 1

I do not: 1

……

Experiment

On the naturalness of Software PAGE 14

§ Data:

Natural languages: Two famous corpora (Brown corpus, Gutenberg corpus).

Coding languages: Java projects, Ubuntu applications in C, after removing
comments.

§ Training technique (10-fold cross-validation)

Randomly select 90% for training

and 10% for validating.

RQ1:Do n-gram models capture regularities in software?

On the naturalness of Software PAGE 15

§ Data: Java projects

§ Findings:

1. Software unigram entropy is much lower than uniform distributions.

2. Cross-entropy declines rapidly with n-gram order.

§ Claim:

1. Java contains a lot of local repetitiveness.

2. Software is far more regular than English.

RQ2:Is the local regularity language-specific or project specific?

On the naturalness of Software PAGE 16

§ Data: 10 different Java projects

§ Train a trigram model on each project.

§ Findings:

1. Self cross entropy is lower.

2. Cross-project entropy is higher.

§ Claim:

Each project has its own type of local, non-Java-specific regularity.

RQ3: Similarities within app domain, and differences between domains?

On the naturalness of Software PAGE 17

§ Data: 10 Ubuntu application domains

§ Findings:

1. Cross-domain entropy is higher.

2. Within-domain entropy is lower.

§ Claim:

A lot of local regularity is repeated within application domains, and much less so
across domains.

Eclipse Suggestion Plug-in

On the naturalness of Software PAGE 18

§ Eclipse’s built-in suggestion engine (ECSE) vs N-gram model suggestion engine
(NGSE)

§ NGSE: good at short tokens.

§ ECSE: good at long tokens.

§ MSE:

If ECSE has long tokens within the top n, take ECSE’s top n offers.

If not, half NGSE, half ECSE.

Eclipse Plug-in’s achievement & findings

On the naturalness of Software PAGE 19

1. NGSE works best with shorter tokens (probably because coders choose shorter
names for frequently used entities).

2. MSE saved more keystrokes compared to ECSE.

POSITIVES

On the naturalness of Software PAGE 20

Positives #1: Deterministic & Explainable

On the naturalness of Software PAGE 21

§ The choice of the N-gram model is good.

§ The N-gram model is deterministic and explainable. But many language models
based on optimization algorithms are not!

§ The scope of this paper is to prove: Software is repetitive & predictable.

§ Good for a study to “prove” a hypothesis.

Positives #2: Strong Empirical Evidence

On the naturalness of Software PAGE 22

§ Large, real-world dataset
- 10 major Java projects
- 10 Ubuntu domains of C applications.

§ Large-scale natural language corpus
- Brown: ~1 million words
- Gutenberg: ~2.5 million words

§ Rigorous procedure: 10-fold cross-validation.

§ Robust and strong empirical evidence.

My critiques of this paper could be fundamentally wrong due to my shallow
research experience, please DO correct me during the discussion section.

NEGATIVES

On the naturalness of Software PAGE 23

Negative #1: Is repeating a good sign?

On the naturalness of Software PAGE 24

§ Repetition does mean regularity, but it is not always a good sign in Software Engineering.

§ Any preprocessing on the codebase that the n-gram model is trained on?
- removed comments
- tokenized codes

§ Any legacy code? Poor practices that caused redundancy (that caused repetition)?

§ Code suggestions to the programmer
– As good as possible? Or as repetitive as possible? As a statistical model’s natural
rationale is to suggest something as repetitive as possible.

Negative #2: The MSE algorithm is too superficial

On the naturalness of Software PAGE 25

§ Eclipse’s built-in suggestion engine (ECSE): “are typically based on type
information available in context”.
->Miss statistical patterns

§ N-gram model suggestion engine (NGSE): a statistical model that considers
partial semantic, lexical, and syntactic information.
->Miss type information.

§ Can we build something by combining the useful information from 2, not by
simply choosing one or another?

Negative #3: Limitations of N-gram

On the naturalness of Software PAGE 26

§ N-gram’s ability to capture grammatical structure is extremely limited.

§ Able to: catch local grammatical structures like: ``public static void``,
``System.out.println(``, ``for (i = 0; i < n; i++) {``

§ Unable to catch: ``try {//~100 words } catch {}``.
- It will need a 100-gram model! Which will be extremely sparse
- Obviously, there’s some grammatical structure between ``try{`` and ``} catch{``.

§ N-grams cannot catch some long grammatical structures.

Negative #4: The scope of this paper

On the naturalness of Software PAGE 27

§ Most software is natural -> It is also likely to be repetitive and predictable

§ Most software is repetitive and predictable -> Most software is natural?

§ Not a sufficient and necessary condition!

Negative #4: The scope of this paper

On the naturalness of Software PAGE 28

§ The author did not formally state that “software is natural”.
It instead said: “(Software) it’s regular”, “ (Software) it’s not random”, or this
experiment supports the conjecture.

§ Because this evaluation cannot prove the conjecture, and software really isn’t fully
a natural language by any means (tolerance of errors? one keyword can have
multiple meanings?).

§ Do we really need to prove this catchy conjecture?
- Proving that software is repetitive and predictable is already a huge contribution!

FUTURE WORK

On the naturalness of Software PAGE 29

Context Free Grammar (CFG)

On the naturalness of Software PAGE 30

References: Jurafsky, Daniel, and James H. Martin. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition with Language Models. 3rd edn, 2025.

• CFG: A concept related to traditional NLP
aiming to catch the grammatical structure of
natural languages.

NP: Noun Phrase
VP: Verb Phrase
PP: Prepositional phrases
Det: Determiner
Aux: Auxiliary

• Construct an abstract syntax tree of what
grammar is allowed in the training data, along
with the training process.

Probabilistic Context Free Grammar (PCFG)
§ Construct an abstract syntax tree of

what grammar is allowed in the
training data, along with the training
process.

§ Construct an abstract syntax tree, but
this time with a probability.

On the naturalness of Software PAGE 31

References: Johnson, David, and May Young.
“Course:CPSC522/PCFG - UBC Wiki.” Wiki.ubc.ca, 2017,
wiki.ubc.ca/Course:CPSC522/PCFG. Accessed 20 Sept.
2025.

Combine PCFG and N-gram

On the naturalness of Software PAGE 32

§ The N-gram model can work with PCFG, and it’s a well-known technique in the
field of traditional NLP [1].

§ Incorporate these two together, and let the N-gram model be capable of catching
complicated grammar in code, and repeat the procedure of this paper again, to see
if the model catches something new.

§ References
[1] Pauls, Adam, and Dan Klein. "Large-scale syntactic language modeling with
treelets." Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2012.

RATING

On the naturalness of Software PAGE 33

The idea of naturalness of this paper is novel, the work done is rigorous, but its reliance
on the N-gram model limits its ability to catch something more in-depth.

3.5/5 (GOOD PAPER BUT NOT LIFE-CHANGING)

On the naturalness of Software PAGE 34

DISCUSSION POINTS

On the naturalness of Software PAGE 35 On the naturalness of Software PAGE 36

1. One and a half years after this paper was posted on Communications of the ACM,
a paper called "Attention is all you need" came out, and everything about language
models, computer vision, speech recognition, and machine translation changed
fundamentally. For the future directions section envisioned by Dr. Hindle (section
6), which direction do you think becomes irrelevant, and which direction do you
think becomes more relevant and realistic?

References: Vaswani, Ashish, et al. "Attention is
all you need." Advances in neural information
processing systems 30 (2017).

2. The N-gram-based Eclipse plug-in showed 27–61% improvement in code suggestion. And
the measure used is the number of keystroke savings. Do you think this result convincingly
demonstrated practical benefits, or is it more of a proof-of-concept?
What makes you think it indicates practical benefits? Or what follow-up study could be done
to make it more convincing?

3. Should “Quality of Code” play into our proof for naturalness? If yes, how can we
incorporate it? If no, please justify it.

4. If we now have Eclipse’s built-in suggestion engine and N-gram model suggestion engine
(NGSE) both in hand, how could we build something potentially better than MSE?

5. Any disagreement or agreement with my critiques before? Do you have other positives or
negatives that you want to share?

On the naturalness of Software PAGE 37

