
CS846 Week 2 Summary Review
Asim Waheed

Towards AI-Native Software Engineering
(SE 3.0): A Vision and a Challenge Roadmap

Problem
The presentation questions whether the current software
development pipeline is broken. In SE 2.0, AI functions
mainly as an assistant through advanced code completion.
Despite its usefulness, the pipeline remains inefficient:
humans bear high cognitive load, training is inefficient,
and code quality is suboptimal.
New Idea
SE 3.0 envisions AI-native software engineering built
around an intent-first, conversation-oriented approach.
Humans focus on thinking, while AI systems handle im-
plementation. The roadmap introduces:

• Teammate.next: A personalized, self-evolving
mentor with a form of Theory of Mind that adapts
to human thinking patterns and ideally makes its rea-
soning understandable to humans.

• IDE.next: A conversation-based UI where code is
hidden by default. Conversations are treated as first-
class assets, complete with version control.

• Compiler.next: Translates conversations into code,
balancing objectives such as accuracy, latency, cost,
security, readability, and scalability.

• Runtime.next: An AI-specific runtime (FMWare)
where models and software coexist. Resources are
usage-managed, fine-tuning happens opportunisti-
cally, and edge-computing routes simple requests to
smaller models.

• FM.next: Curriculum engineering for founda-
tion models—curating high-quality, domain-specific
knowledge and externalizing it from the model.

Positive Points

• Reimagines what it means to be a software devel-
oper: humans focus on ideas and value creation
rather than low-level technical details.

• Rethinks the entire SE pipeline from the ground up,
with detailed discussion of each component.

• Pushes toward democratization of software creation,
enabling broader participation in development.

Negative Points

• Obfuscation of code: With code hidden, questions
arise about the future of manual reviews, vulnerabil-
ity discovery, and skill retention.

• Democratization vs. resources: Although more
people could build software, SE 3.0 may be resource-
intensive, increasing the gap between high- and low-
resource developers.

• Monopolization: The best foundation models
risk being monopolized, reinforcing trends already
present today.

• Feedback loops: If AI trains on AI-generated code,
will all software converge toward the same form?
The presentation raises this but offers no solutions.

Future Work
(1) Incorporate explicit security reviews: how would
tradeoffs between security and utility play out in SE 3.0,
and would AI clarify or obscure them? (2) Survey re-
search effort requirements across the roadmap: compo-
nents like Teammate.next may be near-term, while Run-
time.next requires more fundamental advances.
Rating
3/5 — an average contribution. The vision is ambitious
and thought-provoking, but some aspects are underspeci-
fied and speculative.
While my rating was lower, the class in general had a
more positive view of the paper.
Discussion Points
How would SE curricula adapt to SE 3.0?
We had an interesting discussion here. Jacie brought up
how even right now the CS curriculum does teach us the
very basics even if we do not use them in our day-to-
day life. For example, most CS majors would take an
OS course, or security course where they might be doing
things they would normally never do in real life.
Prof. Godfrey had an interesting point on how universities
and professors are already discussing how to incorporate
AI-based coding into the curriculum. It cannot be com-
pletely ignored. However, the focus has to shift towards
problem solving skills rather than programming skills.
Most of the class seemed to agree that in the future the
most important skill would be problem solving.

1



How can harmful feedback loops (AI on AI-generated
code, prompts, or systems) be prevented?
I brought up the idea that with AI generating all of the
code, it might lead to a homogeneity of code. This could
prove harmful if security vulnerabilities are introduced in
this homogeneous code.
Michael talked about how even now in AI research there
are ways to reduce the chance of feedback loops by limit-
ing how much a model can update itself.
In general, the class seemed to agree that the kind of code
we will see in SE 3.0 might be quite different from the
kind of code we see today. If code is never meant to be
read by humans, it may, eventually, not be very readable
at all.
Does SE 3.0 lead more toward democratization or mo-
nopolization of software creation?
We had an interesting debate on this. On the one hand,
Jacie talked about how monopolization is a risk with any
new technology. However, the focus of this technology to
reduce the skill-barrier required to start developing apps.
Reducing skill-barriers will lead to some level of democ-
ratization.
On the other hand, training and serving FMs is pro-
hibitively expensive. Most of the FMs would likely be
in the hands of a few large corporations.
Overall, we had an interesting discussion of what the fu-
ture of software engineering potentially looks like. Every-
one agreed that the focus will be more on problem solving
skills instead of strong technical skills.

2


