Towards Al-Native Software
Engineering (SE 3.0):
A Vision and a Challenge Roadmap

Presentation by Asim Waheed
CS846 - Mike Godfrey — Week 2

Is the current software

III The PI’Oblem development pipeline

broken?

Introduction

+ Roadmap paper
« Identifies key issues in current Software Engineering (SE) pipeline
* Provides roadmap for Al-native SE

* Provides new vision
* Questions what Software Developer means

* Identifies challenges
* What are potential roadblocks for vision?

SE 2.0: Al-Assisted Software
Engineering

» Current copilots are advanced code completion systems

» Al supports humans, but process still inefficient

* ldentifies following key problems:
* High cognitive load on humans
* Inefficient model training
» Suboptimal code quality




Software Software

Y Engineering 2.0 Engineering 3.0
. 1 . .
S E 3 . 0 . AI - N atlve Teammate.next * Static * Self-Evolving
Personalized Al partners + Impersonal « Personalized Mentor
IDE.next « Code-Centric * Intent-Centric
(Devaloping, Debugging, Maintaining) - [EFNTITIN « Conversations
Intent . L

i _ * Intent-First approach
HOV.V can we fix Al Compiler.next « Logic-Rule »° Search-Space
eW e a assisted Software Code realization through Realization Exploration
Engineering? « Conversation-oriented interactions A
* Humans’job: thinking .
Runtime.next

P N + Serving Models * Serving Compound
* Al's job:implementing St o " ops (Aiware)

FM.next « Data-driven » * Knowledge-driven
Curriculum engineered models inefficient FMs Efficient FMs
I _ Fig. 3. Software engineering 3.0 technology stack. I

Teammate.next IDE.next

* Personalized mentor * Conversation-based Ul
* Self-evolving * Code hidden by default

* Learns from its’ mistakes * Conversations are key asset

* Has Theory of Mind * Version control applies to conversations
» Understands humans have different thinking pattern
* |deally, humans understand Al’s thinking pattern




Compiler.next Runtime.next

« Convert conversations to code » Specific runtime meant for FMWare
* Apps developed using Als = FMWare

* Balances multiple objectives:

¢ Accuracy * Model and software live on the same cluster
* Latency *+ Resources managed by usage
* Cost

 Security? * Fine-tune modelwhen usage is low

* Readability?
* Scalability?

* Edge-computing
* Simple requests routed to smaller models

FM.next

* Current Foundational Models (FMs) trained on text III

Positives Did we like the paper?

* Introduce Curriculum Engineering:
» Curate and organize high-quality domain-specific knowledge
» Externalize knowledge from model




Reimagination of a Software
Developer

* Questions idea of what it means to be a software developer
* Software developer != programmer
* Human’sjob is to think

* Imagines entirely different skillset requirement
* Humans focus more on ideas and providing value
* Lesstime spent tinkering with technical details
* “Justgetitdone”

Democratization of software
@

0e®
TR
Before: After:
Subset of highly skilled people able to People without tech backgrounds may be
create software able to build software
Time spent programming = time not spent Focus shifted to user and providing value

thinking

Questions entire SE pipeline

* Changes workflow from ground-up
* Each aspect of pipeline talked about in detail
* Provides direction towards required advancements

III N egative S \r;Vif;aSE?ideas were a




Obfuscation of code Democratization

* Codeis now in background * Truth: more people can now build software
* Do manual code reviews still exist?

« Security vulnerabilities * However, SE3.0 is more resource intensive

* Likelihood of same vulnerability introduced to many systems high

* Increased gap between high vs. low resource development
* Loss of skill

« Even trained software engineers may eventually lose ability to code

Monopolies Feedback loop

* Best FM will be monopolized * Briefly mentions it, does not give ideas to solve it

* Already true in status quo: paper does not address it * Will all code eventually look and run the same?

* Isthat a good thing?




III Futu re Work m?;/\;canwe extend

Rating: 3

Average.

1. Incorporating security reviews 2. Survey

* How would prevailing security practices be affected? * Different parts of roadmap require different levels of work
* Teammate.next: already quite close
* Runtime.next: completely new idea

* Security vs. utility tradeoff

* Will Al make the tradeoff clear?

* WillAl ignore it to enhance user experience?
* How much more research is required to build this vision?




How does this impact the software engineering
curriculum?

How would we prevent feedback loops?
* Allearning on Al generated code
* Al prompting Al with Al generated prompts
* Al writing code that works better with other Als

Democratization vs Monopolization, which is it?

Is code obfuscation something we want?

Discussion
Points




