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Significant cognitive overload on the human
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Inefficient model training on domain-specific tasks

An example of the performance of FMs used for domain-specific tasks
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“The most effective grounding strategies we explored in this paper still exhibit a 20-
25% performance gap compared to oracle grounding”

Boyuan Zheng, Boyu Gou, Jibyung Kil, i d YuSu. 2025, fgrounded. In Intemational C




Unaffordable resource usage

It is very expensive to fine-tune the models for improved domain-specific capability

“We predict that to achieve 95% accuracy for in-domain low-level tasks, 1M episodes
would be required, while 2M episodes would be required to obtain 95% episode
completion rates for 5-step high-level tasks”

L, Wei, et al. On the Effects of Data Scale on Computer Control Agents. In Neural Informati

Vision of Software Engineering 3.0
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Development is no longer driven by code but by intents expressed through back-
and-forth conversations between human developers and their AI teammates.

Suboptimal code quality produced by FMs

Write a function to merge two sorted arrays into a single sorted array.
Input: Two arrays, array| and array2, each sorted in non-decreasing order.

Output: A single array that combines the elements of array] and array2, sorted in
non-decreasing order.

Example: Given array] = (2,7, 11, 15], array2 = 5, 8,15, 17), rewrn [2,5,7, 8, 11,

15,15,17).
VS Code Copllot v1.156.653
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Figure 1: Example codes with distinct time complexity generated by Copilot and GPT-4, respectively.
Code accessed on January 15, 2024,

“While functionally correct, this approach suffers from sub-optimal time complexity
and space complexity”
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What fuzzing looks like in SE 3.0
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What test execution looks like in SE 3.0 What GUI testing looks like in SE 3.0
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What GUI testing looks like in SE 3.0 Balance between ask too many and not asking enough

Optimizing Instructions and Demonstrations
for Multi-Stage Language Model Programs
Vldeo Demo Krista Opsahl-Ong"*, Michael J Ryan!*, Josh PurtelF,
David Broman®, Christopher Potts', Matei Zaharia, Omar Khattab'

'Stanford University, 2Basis, *KTH Royal Institute of Technology “UC Berkeley
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Figure 1: An example of the optimization problem we
explore, shown for a multi-hop retrieval LM program.
Given some question—-answer pairs and a metric, the
optimizer proposes new instructions and bootstraps new
demonstrations (not pictured) for each stage.
Sources hitps://osu-nlp-group githubio/SceAct/



Improving the efficiency of code synthesis Improving runtime performance

SynCode: LLM Generation with Grammar Augmentation
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Figure 1: In the SYNCODE workflow, the LLM takes partial output Cy and generates a distribution for the
next token ti41. The parser processes Cj to produce accept sequences A and remainder 7. These values
are used by the DFA mask store to create a token mask, eliminating syntactically invalid tokens. The LLM
iteratively generates a token ty; using the distribution and the mask, appending it to Cy, to create the
updated code Cjy1. The process continues until the LLM returns the final code C,, based on the defined
stop condition.

Source: https://osu-nlp-group.githubio/SceAct/

Positive points Negative points

> Redefine software engineering in the era of LLM > Mostly from a theoretical perspective...

> Reveal the challenges we need to address to shift to SE 3.0. » Blurry boundary between SE 2.0 and SE 3.0?

@ et o &

the human developer. In our experience, a typical programming session looks as follows: create

a class, write the constructor’s signature and have the copilot autocomplete the implementation, - s @) _Search for best soliken Z(§>
create a new method, write a code comment inside the body of that method (e.g., “## Clone a I Conversation <% =
GitHub repository”) to induce copilot to generate code, rewrite the comment to force copilot — Y

to use some specific package, run tests, discover that tests failed because a key requirement was for clarification

missed, reason about three alternative copilot suggestions while coding the fix, finish writing the
fix, rerun the tests, and so on. As the example highlights, the process is inherently task-driven and

puts a significant cognitive overload on the human. React to Output
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Rating

Theoretical foundation: 5/5
Practical experience: 4/5

Overall: 4.5/5

Discussion

> We are now at SE 2.0 or 2.5?
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Discussion
> Is SE 3.0 = SE based on agent?

‘Modern’ agent = LLM + external environment?

Text Input

Text Output

Language Models What about self-reflection?

Multi-agent simulation?
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LLM-based Agents

hitps://ysu1989.gith

Discussion

» Do FMs really think or just content retrieval?

Yann LeCun

Do LLMs perform reasoning or approximate retrieval?
There is a continuum between the two, and Auto-Regressive LLMs are
largely on the retrieval side.

> If just content retrieval, then can we ever shift to SE 3.0?

‘Sourceshttps://x.com/



Discussion

> Is Prompt Engineering the only thing we can do as a SE researcher?

y "ﬁ Tsarathustra

Fei-Fei Li says Stanford's Natural Language computing lab has only 64
GPUs and academia is "falling off a cliff" relative to industry

Sourceshttps://x.com/
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