TOWARDS AI-NATIVE SOFTWARE ENGINEERING (SE
3.0): A VISION AND A CHALLENGE ROADMAP

Presenter: Haonan Zhang

January 16, 2025

UNIVERSITY OF
WATERLOO

Significant cognitive overload on the human

isPositive str Promise

t fetch('ht proc

Source: GitHub Copilot

Different stages of SE

) e
Software Softwa Software
Engineering 1.0 Engineering Engineering 3.0
« Code-first * Code-first * Intent-first,
conversation-oriented
development
* Tools supporting * Al models supporting « Al-native SE process
traditional SE Process traditional SE process maximizing the
activities activities (AI4SE) strengths of human
(requirements) & Al
(implementation)
+ Powered by program + Powered by expensive + Powered by efficient
analysis technologies data-driven models knowledge-driven

with limited capabilities models with advanced
reasoning capabilities

T 7 T

time 2

Inefficient model training on domain-specific tasks

An example of the performance of FMs used for domain-specific tasks

Model Cross-Task Cross-Website Cross-Domain

Ele. Acc Op.Fl StepSR Ele. Acc Op.Fl StepSR Ele. Acc Op.Fl StepSR

Supervised Fine-Tuning
FLAN-TS

—XL

In-Context Learning

GPT-3.5 194 598 168 149 565 141 255 579 242

GPT-4 402 634 317 274 610 27.0 362 619 207
SEEACT

—Auributes 4.7 395 47 97 378 97 160 414 153

~Annotation 151 665 130 113 634 105 165 651 147

— Choice. 489 691 40.6 485 70.6 417 440 709 40.9

" -Oncle 729 809 657 744 837 700 728 736 621

“The most effective grounding strategies we explored in this paper still exhibit a 20-
25% performance gap compared to oracle grounding”

Boyuan Zheng, Boyu Gou, Jibyung Kil, i d YuSu. 2025, fgrounded. In Intemational C

Unaffordable resource usage

It is very expensive to fine-tune the models for improved domain-specific capability

“We predict that to achieve 95% accuracy for in-domain low-level tasks, 1M episodes
would be required, while 2M episodes would be required to obtain 95% episode
completion rates for 5-step high-level tasks”

L, Wei, et al. On the Effects of Data Scale on Computer Control Agents. In Neural Informati

Vision of Software Engineering 3.0

ﬂ Provide Intent
&

(+ examples, + data) a
T 1 "
T

Conversation =~ &%

() -
Search for best solution Q
—_ S

Reflect and ask
for clarification

React to Output

Development is no longer driven by code but by intents expressed through back-
and-forth conversations between human developers and their AI teammates.

Suboptimal code quality produced by FMs

Write a function to merge two sorted arrays into a single sorted array.
Input: Two arrays, array| and array2, each sorted in non-decreasing order.

Output: A single array that combines the elements of array] and array2, sorted in
non-decreasing order.

Example: Given array] = (2,7, 11, 15], array2 = 5, 8,15, 17), rewrn [2,5,7, 8, 11,

15,15,17).
VS Code Copllot v1.156.653

4)
-+ sppensarrarals])

R .

Figure 1: Example codes with distinct time complexity generated by Copilot and GPT-4, respectively.
Code accessed on January 15, 2024,

“While functionally correct, this approach suffers from sub-optimal time complexity
and space complexity”

6
What fuzzing looks like in SE 3.0
at1u g l00Ks like .
Fuzz4ALL: Universal Fuzzing with Large Language Models
R S s
ity o
ZBJ'CVCS“\J‘G@CCWf NI==K$
. o cves Wl aeg =
2 s il System Under Test
O, distillati sample fim mirt
o el mEmel s (@) 0,
m
Y S——g
LLI
o o
|
- mutate-existing =
qoneration @:mic s
Autoprompting gsnaration strategies Fuzzing Loop
8

What test execution looks like in SE 3.0 What GUI testing looks like in SE 3.0

REET mpt: We yent to st the Voo Trackr” Agn.
You Name It, I Run It: An LLM Agent to Execute Tests of oI et « e v ey
Arbitrary Projects SEral» <Widget Name=)

ISLEM BOUZENIA, University of Stuttgart, Germany

AL Operation: “Clck”. Widget: "ADD -~
MICHAEL PRADEL, University of Stuttgart, Germany

2 (Test prompt): We successfully md mz above operation. The
curent page & Addncome” i 1 The Upper oot of
oo, Tha P EkTo - Lo of o

gen:raxe v mpus e 1 Secence (WiGgeL rame>-+< oot

. - : . ient >) 4nd the operation s g (<Operatons) o=
Make LLM a Testing Expert: Bringing Human-like Interaction to .
Mobile GUI Testing via Functionality-aware Decisions A2: . Operation: Cik. Widget:“Enter =
L' Chunyang Chen, Junjie Wang'™", Mengzhuo Chen', Boyu Wot*, e TR Gy)
Project repository [e e s e e s (persoman
1 Sttt o oot Chne ey o e B Chie ol okas genarte i op € St e s Y B
Preparation phase Feedback phase oo O 7 the operaton fter put (<Operationsl. T+ <Widget Names) =
Doy oo =
Meta-prompting Web searc} Sisumm | prompt o) Wrdqe! oy i personal- Gpession: Giok” Widger” 4O
Summarization_ @) Comml cente”” €9 Agent e d
! - r st : We successuly did the sbove operation. The
Language- Containerization Locations of Docs & C'ea"e" ‘C°m’"a‘d) 43R0 u’é’f@"‘&me? s SADD BRPENSE: and . The upper
specific guidelines Clscripts tutorials 0 execute I patol e Manu: s Sdeenu - Lt oftmted -~ Wt |
R L ot 001 @) s B S s renares <Ot T+ o o) b
~ - -, oo
Read and summarize® [U I icomerand Ad: -~ Operaion: Scrol” Widget: Menu
s Tools. r 5 (st prompy W succesiy i the above opertion. The
_ Installation hints 2] S e & e coount “Exchange rates 3
The Uppetart of e Tmz(\;nl = e nen Lt of
! T tested funcions. “Funciond: Add. account - Path of test
Prompt ingredients Scripts to execute test suite

actvies: . History of latest Yot Speciton & requee?
ouble-cick /-

AS: . Operation: "Clck". Widget: Exchange rates”

What GUI testing looks like in SE 3.0 Balance between ask too many and not asking enough

Optimizing Instructions and Demonstrations
for Multi-Stage Language Model Programs
Vldeo Demo Krista Opsahl-Ong"*, Michael J Ryan!*, Josh PurtelF,
David Broman®, Christopher Potts', Matei Zaharia, Omar Khattab'

'Stanford University, 2Basis, *KTH Royal Institute of Technology “UC Berkeley

query =

RGPS O otiovo “soarch. auory” 1

Figure 1: An example of the optimization problem we
explore, shown for a multi-hop retrieval LM program.
Given some question—-answer pairs and a metric, the
optimizer proposes new instructions and bootstraps new
demonstrations (not pictured) for each stage.
Sources hitps://osu-nlp-group githubio/SceAct/

Improving the efficiency of code synthesis Improving runtime performance

SynCode: LLM Generation with Grammar Augmentation

Video

LLM
- 5 par
— : . =
retwrn Decoding Algorithm — Parser

Incremental Parser
Comleted Code C.

Figure 1: In the SYNCODE workflow, the LLM takes partial output Cy and generates a distribution for the
next token ti41. The parser processes Cj to produce accept sequences A and remainder 7. These values
are used by the DFA mask store to create a token mask, eliminating syntactically invalid tokens. The LLM
iteratively generates a token ty; using the distribution and the mask, appending it to Cy, to create the
updated code Cjy1. The process continues until the LLM returns the final code C,, based on the defined
stop condition.

Source: https://osu-nlp-group.githubio/SceAct/

Positive points Negative points

> Redefine software engineering in the era of LLM > Mostly from a theoretical perspective...

> Reveal the challenges we need to address to shift to SE 3.0. » Blurry boundary between SE 2.0 and SE 3.0?

@ et o &

the human developer. In our experience, a typical programming session looks as follows: create

a class, write the constructor’s signature and have the copilot autocomplete the implementation, - s @) _Search for best soliken Z(§>
create a new method, write a code comment inside the body of that method (e.g., “## Clone a I Conversation <% =
GitHub repository”) to induce copilot to generate code, rewrite the comment to force copilot — Y

to use some specific package, run tests, discover that tests failed because a key requirement was for clarification

missed, reason about three alternative copilot suggestions while coding the fix, finish writing the
fix, rerun the tests, and so on. As the example highlights, the process is inherently task-driven and

puts a significant cognitive overload on the human. React to Output

___|
Rating

Theoretical foundation: 5/5
Practical experience: 4/5

Overall: 4.5/5

Discussion

> We are now at SE 2.0 or 2.5?

.o .5
5% + + =

Software

Engineering 3.0

+ Code-first « Code-first « Intent-first,
conversation-oriented
development

* Tools supporting * Al models supporting * Al-native SE process
traditional SE Process traditional SE process maximizing the
activities activities (AI4SE) strengths of human

(requirements) & Al
(implementation)

+ Powered by program « Powered by expensive « Powered by efficient
analysis technologies data-driven models knowledge-driven
with limited capabilities models with advanced

reasoning capabilities

N s

time

Discussion
> Is SE 3.0 = SE based on agent?

‘Modern’ agent = LLM + external environment?

Text Input

Text Output

Language Models What about self-reflection?

Multi-agent simulation?
l N |
Perception @
Action

LLM-based Agents

hitps://ysu1989.gith

Discussion

» Do FMs really think or just content retrieval?

Yann LeCun

Do LLMs perform reasoning or approximate retrieval?
There is a continuum between the two, and Auto-Regressive LLMs are
largely on the retrieval side.

> If just content retrieval, then can we ever shift to SE 3.0?

‘Sourceshttps://x.com/

Discussion

> Is Prompt Engineering the only thing we can do as a SE researcher?

y "ﬁ Tsarathustra

Fei-Fei Li says Stanford's Natural Language computing lab has only 64
GPUs and academia is "falling off a cliff" relative to industry

Sourceshttps://x.com/

UNIVERSITY OF

WATERLOO

%

