
Towards AI-Native Software Engineering (SE 3.0): A Vision and a
Challenge Roadmap Review - By Ahmed El Shatshat

Problem to be Solved
Brooks notes the fact that software development is slow,
cumbersome, and suffers from many structural deficiencies that
have origin in the essences of software development. Because of
these issues, there is much hope for a solution that will
revolutionize software development. However, this concept of a
silver bullet is mythical, and impedes actual progress in software
development practices. Furthermore, solutions touted as silver
bullets are often revealed to provide some gains, but not at the
order of magnitude one would expect from silver

New Idea

Brooks instead rejects the silver bullet as a concept, using those
essences of software to argue that the difficulties of software
development are far too tightly coupled with software
development as a medium for there even to be the possibility of a
silver bullet. The essences he identifies are complexity,
conformity, changeability, and invisibility.

Software is much more complex than their size would suggest. As
a result, it is that much more difficult for one to comprehensively
wrap their head around every facet of a software system. Digital
systems have a complexity an order of magnitude greater than
most other systems, which further contributes to human error in
this regard; there’s no domain that is so unbound by the logic of
structural space in the same way software is.

In addition to this, software systems must conform with human
institutions and systems already in place. This further adds
complexity as a designated software system is forced to follow the
convention of any domain it is being applied to. In addition to
this, software itself needs to conform to real world structures
through use of data structures and encoded logic, which further
increases difficulties.

Software is also much more malleable than products from other
domains; it is much more feasible to write a new driver for a new
printer than it is to enforce a uniform driver interface across all
printers. This forces software into a situation where it must
conform to a complex cultural matrix across industries and
standards.

Finally, the invisibility of software makes it much more difficult
to create comprehensive models in the same way one can for
physical systems. It is very difficult to ensure that all stakeholders
and developers on the same page in terms of design and
functionality even with the use of models we have today, and such

miscommunications can propagate issues that lead to the death of
a project.

Solutions such as high-level languages and unified programming
environments have provided clear benefits, yet are empirically
seen to not be silver. To even have a chance at a silver bullet, the
essence of what makes software difficult must be addressed, not
simply the technical aspects of the process

Positives
Revolutionary Presentation of Software and its Issues: There's
a reason why this paper is one of the most widely cited papers
written in software. Even from the larval stages of software
development as we know it today, Brooks makes bare the essence
of software development, and zeroes in on how this essence is
what makes software development difficult; any solution
attacking contingent aspects of process or symptoms of that
essence will not make the great gains imagined.

Timeless in its Message: Brooks expresses ideas that are still
highly relevant today, even cleanly addressing concepts to the
bleeding-edge of software today. Furthermore, many ideas he
posits, despite having been demonstrated to be effective, are not
being used as ubiquitously as they perhaps should.

A Time Capsule: It is interesting to see how the software field
manifested in the mid-80s, in a time when high-level languages
were just beginning to be iterated upon. With the gift of hindsight,
one is able to read the ideas Brooks has in the larval stages of the
development of many software tools and practices that today are
commonplace, and perhaps reevaluate how they are being
manifested today; indeed, this paper is almost like a requirements
document for future software practices.

Negatives

Antiquated in Nature: hile the age of the paper has its benefits, it
cannot be ignored that it is still nearly 40 years old. As such,
many of the ideas aren't quite actionable, given they've already
become integral parts of software development culture.

Untested Thoughts of a Single Author: hile not much of a
negative, the paper is largely a collection of Brook's musings on
software development as he sees it. It happens that I also agree
with much of what he says, but there's not much in the way of
proof that what he's saying is necessarily correct.

Future Work

In terms of future work, It would be interesting to see what has
changed over 40 years (since 1986) in terms of the guidelines

outlined by Brooks; what was he correct about, what did he miss,
and what has been ignored?

Further work on addressing the identified essentials of software
development that are responsible for impeding development
would also provide novel approaches to the problem.

 For example, are there ways in which software can be
structured in a way that is more resilient to change

 Despite the unvisualizability of software, can we
develop structural models that are more in-line with the
epistemological models software developers employ?

 What aspects of software development are still victim to
arbitrary conformity, and can we abrogate such
conformity to streamline the development process
without loss of quality?

Rating

I give the paper a 5/5, this paper is visionary in what it strives to
do, and the impact of the paper speaks for itself in terms of how
effectively it achieved its goal.

Discussion Points

1. Which the essences of software development outlined in
Brooks paper do you believe are the primary cause for
issues and accidents in the software development
process today?

2. What recommendations by Brooks do you feel have
been inadequetely implemented by the software industry
at large, despite their demonstrated or apparant
usefulness?

3. Are you a believer in a theoretical silver bullet that we
simply haven't discovered, or do you believe that no
silver bullet will be found, merely incrementally better
solutions?

Summary of Discussion

In the class discussion, we further ruminated on the essences
identified by Brooks, and reconciled the temporal contextual
differences between his time and ours.

Prof. Godfrey noted that there has been much work done in the
way of software visualization since Brooks time; however, their
primary function is as a communication aid and are employed
most frequently as informal diagrams to try and explain ideas to a
fellow stakeholder. However, architectural diagrams such as class
diagrams have been very useful in structurally situating software
constructs with each other.

Furthermore, it was noted that it is difficult even with models to
confirm that the epistemological model within each individual
stakeholder’s mind is firstly competently interpreted vis a vis the
diagram, and secondly that the epistemological model’s held in
each mind are the same. It is impossible to know whether this is

the case or not until some sort of working prototype has been
created; this could be why Brooks notes the benefit of prototyping
early.

AI as it exists today is also in a very different form that it was in
Brooks’ time. Prof. Godfrey notes the shift from building ground
truth models which were designed to model the entire world to a
more statistical approach was wrought by the impact the advent of
the internet had on the field. Previously, one was unable to simply
access wholesale datasets; with the internet, one can simply do a
search and find more data than they may know what to do with.
However, many of the ideas Brooks discusses in relation to the AI
systems of his day are still relevant to the AI systems of today.

We also touched on the concepts from the other paper from this
same week discussing SE 3.0, and ask if that theoretical view of
software engineering in it’s most optimistic iteration could be a
silver bullet. I disagreed, given that even with the improvements
noted in the paper by Hassan et al. it would not remove the issues
that stem from human error in design and communication.
Realistically, it would be similar to the gains achieved from
moving from low-level Assembly to high-level programming
languages.

Prof. Godfrey ended the discussion with an elucidating point:
most revolutionary jumps in software development come from
addressing the “dumb stuff” that we as software engineers didn’t
need to be doing in the first place; we just didn’t know better at
the time.

