CS846 —
Empirical Software Evolution

Winter 2025, Thurs 2:30-5:20pm

Mike Godfrey, DC2340
migodQuwaterloo.ca
@migod on twitter

Zoology c. 1900

*“Mast timelis spent daing data collectian,
cleansing, curation, etc.

 Then analysis, Organization, categorization, ...

— Based on low-level.empirical observation

* Weak predictive power

Topics and themes

"Physics is the only real science.
The rest are just stamp collecting.”

Ernest Rutherford (1871-1937)

Father of atomic physics
Nobel prize for ... chemistry

LasassassassssssssAAAAAAAAAAAAANS

3 Gerrit Code Revfé’W\
= stackoverflow

J enins

TR .
= Iravis Cl

The “S “curve of successful growth Growth of the Linux kernel source tree
(# of src files)

y = .21*x? + 252*x + 90,055 r2=.997
\
6000

)
T I

4000
3)/._-/
00

100 v“"’}

size

of source code files (*.[ch])

Jn 1983 Jin19% 0ct19% Mar 1997 1199 Dec 1999 Aor 2001

Uncommented LOC
o - o [==3
L) L =) =1

(=1

Average / median . h file size

st s
+ Aol
W st o
[{
-+-Average . file size - dev. releases

-+Average .h fle size - stable releases
-+Median hfilg size - dev. releases

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul1998 Dec 1999 Apr 2001

ap

ap

and this code ...

const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err I=NULL) {
return err;

!
S

ap_threads_per_child = atoi(arg);
if (ap_threads per child > thread limit) {
ap_log errorlAPLOG_MARK, APLOG _STARTUP, 0, NULL,
"WARNING: ThreadsPerChild of %d exceeds ThreadLimit "
"value of %d threads,", ap_threads_per_child,
thread limit);

ap_threads per child = thread limit;
1
S

else if (ap_threads per child < 1) {

' log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,

"WARNING: Require ThreadsPerChild > 0, setting to 1");

_threads per child=1;

It
s

return NULL;

Consider this code...

const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err I=NULL) {
return err;

!
S

ap_threads per_ child = atoi(arg);
if (ap_threads per child > thread limit) {
ap log errorlAPLOG_MARK, APLOG STARTUP, 0, NULL,
"WARNING: ThreadsPerChild of %d exceeds ThreadLimit "
"value of %d", ap_threads per child,
thread limit);

ap_threads per child = thread limit;

1

S

else if (ap_threads_per_child <1) {
ap_log error(APLOG_MARK, APLOG_STARTUP, 0, NULL,

"WARNING: Require ThreadsPerChild > 0, setting to 1");

ap_threads_per_child = 1;

It

S

return NULL;

Major theme

Evidence-based program comprehension

Understanding a software system means understanding its
parts, their inter-relationships, and their histories

A software system is more than just compiled source code

— Myriad source artifacts + deployment environments + development
processes + supporting tools + developers + user community

To understand the history of a software system, you have to
see the big picture through the lens of data analytics and
socio-technical context

Major theme
Evidence-based program comprehension

* To better understand people, we can use techniques
from social sciences (to produce data)

e.g., interviews (pre and post study), surveys, grounded theory

* To understand tools and processes, we can use
instrumentation (to produce data)

* To better understand software artifacts (and other data),
we can use techniques from data science
e.g., machine learning and LLMs, data mining, NLP, statistics

Other topics

* Data science applied to sw development artifacts
— Aka Mining Software Repositories / software analytics
— What can we do now? How accurate is it? How useful?

— Can we make sense of / link up the many kinds of
artifacts?

— Is there enough signal in the data?
— Are we enabling bad management?
— Actionable advice: Is that the gold standard?

— The challenges & opportunities of treating development
artifacts as "big data"

Major theme
Evidence-based program comprehension

* There are many, many kinds of development artifacts!

e.g., internal docs (requirements, design, testing), git commits (+
meta-data), issue tracking histories, build/deploy scripts, test
suites, developer mailing lists, execution logs, ...

* Development artifacts have explicit internal structure and
both explicit and implicit interrelationships

* All of these artifacts have histories, so we can track evolution,
measure long term effects and costs, ... over time

Other topics

* AI4SE

— i.e., using Al techniques such as LLMs, NLP, ML to aid in software
engineering tasks: code review, defect prediction, code
summarization, code completion and recommendation

— (Not to be confused with SE4AI, which is also a thing)

* What is program comprehension?
— Mental models and cognition
— How can we evaluate comprehension?
— What is the value of software visualization?
— Does instrumenting IDEs provide useful knowledge?

Meta-topics

* What to do when the data is messy, incomplete,
noisy, ambiguous, wrong, ...

* Measuring and metrics
— "Not everything that can be counted counts;
not everything that counts can be counted."

* Use of statistics, machine learning, LLMs, ...

Course text book

Perspectives .. Data Science
'~ for Software Engineering

Exbied by Tim Monzies. Laurie Wilkams. Thomas Zimmenmann

i

e Perspectives on Data Science for Software Engineering, 2016
Tim Menzies, Laurie Williams, Thomas Zimmermann (eds.)

— Very short, very readable chapters explaining key ideas, techniques, and
experiences applying data science techniques to software development

artifacts (aka software analytics aka Mining Software Repositories)

Titles of some likely readings

"Cowboys, ankle sprains, and keepers of quality: How is video game
development different from software development?"

"The secret life of bugs: Going past the errors and omissions in software
repositories"

"Why (development artifact) provenance matters"

"The truth, the whole truth, and nothing but the truth: A pragmatic guide
to assessing empirical evaluation"

"The bones of the system: A case study of logging and telemetry at
Microsoft"

"Who should fix this bug?"

Logistics

http://plg.uwaterloo.ca/~migod/846

| need three + three volunteers

for next week (5646 —

Empirical Software Evolution

1. "Nosilver bullet: Essence and accidents of software engineering”, Fred
Brooks, IEEE Computer, April 1987.

- Presenter: ?7??

— Scribe: ?? Winter 2025, Thurs 2:30-5:20pm

2. "The truth, the whole truth, and nothing but the truth: A pragmatic
guide to assessing empirical evaluation”, Blackburn et al., ACM Trans.

on Programming Languages and Systems (TOPLAS), 38(4), Oct. 2016. Mike Godfrey, DC2340
— Presenter: ??? migod@uwaterloo.ca
— Scribe: ??

@migod on twitter

3. "Towards Al-native software engineering (SE 3.0): A vision and a
challenge roadmap", Hassan et al., arxive, Oct. 2024
- Presenter: ?7?
— Scribe: ??

