CS846 —
Empirical Software Evolution

Fall 2025, Tues 2:00-4:50pm TOpiCS ad nd themes

Mike Godfrey, DC2340
migod@uwaterloo.ca

@migod on twitter

Zoology c. 1900

"Physics is the only real science.

«‘Most timelis spent daing data collection, The rest are just stamp collecting.”
cleansing, curation, etc.

siomumeroa . E10ESE Rutherford (1871-1937)

R

* Then analysis, ©rganization; categorization, ...
— Based on low-level'empirical observation

Father of atomic physics
Nobel prize for ... chemistry

R e e e A a

- 50 NEW ZEALAND
* Weak predictive power

3 Gerrit Code Review \
= stackoverflow

J enins

TR .
&z Iravis Cl

The 'S ”curve of successful growth Growth of the Linux kernel source tree
(# of src files)

y = .21*x2 4+ 252*x + 90,055 r2=.997
6000 \

T —

4000

T
&
oM

size ; ’/-/
T
0
0
0
3
0
[)
.
0
#*

o -’"J

time — 0 '

1199 Jin 194 (et 199 Mar 1997 Ju 1998 Dec 1999 Aor 2001

Average / median . h file size Consider this code...

140 const char *err = ap_check cmd context(cmd, GLOBAL ONLY);
if (err I=NULL) {
return err;
120 o |
100 " 'M ap_threads per_child = atoi(arg);
if (ap_threads per child > thread_limit) {
880 u}” ap_log error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
| + I "WARNING: ThreadsPerChild of %d exceeds ThreadLimit "
B40 "value of %d", ap_threads per child,
% thread limit);
8.4 X WM‘WW"“
£ I i ap_threads per child = thread limit;
£ 2 “+-Average .h fle size - dev. releases !
S —+Average .h file size -- stable releases else if (ap_threads per child < 1) {
g 0 -+Median hfile size -- dev. releases ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
T T T T

' "WARNING: Require ThreadsPerChild > 0, setting to 1");
W% 1% Ot Marfo W19 Decto® Apraodd ap_throads. per child = 1.
I’L‘lurn NULL;

and this code ... Major theme
Evidence-based program comprehension

const char *err = ap_check cmd context(cmd, GLOBAL ONLY);
if (err I=NULL) {

return €11, . . .
\ * Understanding a software system means understanding its
ap_threads_per_child = atoi(arg); parts, their inter-relationships, and their histories
if (ap_threads per child > thread_limit) {

ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,

"WARNING: ThreadsPerChild of %d exceeds ThreadLimit " e A software system is more than just compiled source code
"value of %d threads,", ap_threads per child, . . .
thread limit); — Myriad source artifacts + deployment environments + development

processes + supporting tools + developers + user community

ap_threads per child = thread_limit;

1
]

else if (ap_threads per child < 1) { * To understand the history of a software system, you have to

ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL, see the big picture through the lens of data analytics and
"WARNING: Require ThreadsPerChild > 0, setting to 1"); socio-technical context

ap_threads per child = 1;

!

s

return NULL;

Major theme Major theme
Evidence-based program comprehension Evidence-based program comprehension

* To better understand people, we can use techniques .
from social sciences (to produce data)
e.g., interviews (pre and post study), surveys, grounded theory

There are many, many kinds of development artifacts!
e.g., internal docs (requirements, design, testing), git commits (+
meta-data), issue tracking histories, build/deploy scripts, test
suites, developer mailing lists, execution logs, ...

* To understand tools and processes, we can use

instrumentation (to produce data) » Development artifacts have explicit internal structure and

both explicit and implicit interrelationships
* To better understand software artifacts (and other data),
we can use techniques from data science .
e.g., machine learning and LLMs, data mining, NLP, statistics

All of these artifacts have histories, so we can track evolution,
measure long term effects and costs, ... over time

Other topics Other topics

* Data science applied to sw development artifacts: * AI4SE
. o . — i.e., using Al techniques such as LLMs, NLP, ML to aid in software
— aka Mining Software Repositories / software analytics engineering tasks: code review, defect prediction, code

summarization, code completion and recommendation
— What can we do now? How accurate is it? How useful?

— Can we make sense of / link up the many kinds of e SE4AI

artifacts? — i.e., the design of specialized SE techniques to aid in developing

Is th hsi lin the data? software systems that build around LLMs ("FMware")
— IS there enougn signal In the data:

— Are we enabling bad management? * What is program comprehension?

— Actionable advice: Is that the gold standard? — Mental models and cognition
— How can we evaluate comprehension?

— What is the value of software visualization?
— Does instrumenting IDEs provide useful knowledge?

Meta-topics

* What to do when the data is messy, incomplete,
noisy, ambiguous, wrong, ...

* Measuring and metrics
— "Not everything that can be counted counts;
not everything that counts can be counted."

* Use of statistics, machine learning, LLMs, ...

Course text book
i j M '

Perspectives o Data Science
~ for Software Engineering

Exbied by i Menzies. Lauwrie Wikams, Thomas Zimmenmann

e Perspectives on Data Science for Software Engineering, 2016
Tim Menzies, Laurie Williams, Thomas Zimmermann (eds.)

— Very short, very readable chapters explaining key ideas, techniques, and
experiences applying data science techniques to software development

artifacts (aka software analytics aka Mining Software Repositories)

Some of the readings

"Cowboys, ankle sprains, and keepers of quality: How is video game
development different from software development?"

"Can LLMs replace manual annotation of software engineering artifacts?"
"Software Bertillonage: Finding the provenance of a software artifact”

"Code today, deadline tomorrow: Procrastination among software
developers"

"With great humor comes great developer engagement"

"Wolves in the repository: A software engineering analysis of the XZ utils
supply chain attack"

Logistics

http://plg.uwaterloo.ca/~migod/846

Some student feedback

* "This was probably the best class I've been in all the 17 years of my
education."

* "[Student] presentations were a good tool to improve one's speaking
skills."

* "[Prof] leads discussions [which were] helpful & motivating."

* "Very interesting material. Strong departure from the stuff |
normally see. Interesting to get a different set of opinions / topics /
points of view."

| need (three + three) volunteers
for next week

1. "Nosilver bullet: Essence and accidents of software engineering”, Fred
Brooks, IEEE Computer, April 1987.
- Presenter: Jacie Jermier
— Scribe: Youssef Souati

2. "The truth, the whole truth, and nothing but the truth: A pragmatic guide to
assessing empirical evaluation”, Blackburn et al., ACM Trans. on
Programming Languages and Systems (TOPLAS), 38(4), Oct. 2016.

- Presenter: Brian Do
— Scribe: Tongwei Zhang

3. "Towards Al-native software engineering (SE 3.0): A vision and a challenge
roadmap", Hassan et al., arXiv, Oct. 2024
— Presenter: Asim Waheed
— Scribe: Michael Ogezi

Some student feedback

"Great selection of papers. [Prof] very knowledgeable; excellent at
leading interesting / informative discussions."

"Paper selection was very good. The textbook was very helpful to
introduce the subject of empirical sw eng."

"Interesting and diverse topics."
"[Class atmosphere] was positive and calm."

[The prof interrupted too much to add his own two cents /
background / opinions. Also, he nitpicked on presentation details,
which | found a bit off-putting. But I liked the course!]

CS846 —
Empirical Software Evolution

Fall 2025, Tues 2:00-4:50pm

Mike Godfrey, DC2340

migodQRuwaterloo.ca

@migod on twitter

