
CS846	—
Empirical	Software	Evolution	

Fall 2025, Tues 2:00-4:50pm

Mike Godfrey, DC2340
migod@uwaterloo.ca

@migod on twitter

Topics and themes

Zoology c. 1900

• Most time is spent doing data collection,
cleansing, curation, etc.

• Then analysis, organization, categorization, ...
– Based on low-level empirical observation

• Weak predictive power

"Physics is the only real science.
 The rest are just stamp collecting."

Ernest Rutherford (1871-1937)

Father of atomic physics
Nobel prize for … chemistry

time

size

The “S” curve of successful growth

0

1000

2000

3000

4000

5000

6000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001#

o

f

s
o

u
r
c
e

c
o

d
e

f
il
e
s

(
*
.[

c
h

]

)

Development releases (1.1, 1.3, 2.1, 2.3)
Stable releases (1.0, 1.2, 2.0, 2.2)

Growth of the Linux kernel source tree
(# of src files)

y = .21*x2 + 252*x + 90,055 r2=.997

Average / median .h file size

0

20

40

60

80

100

120

140

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

U
n

c
o

m
m

e
n

te
d

 L
O

C

Average .h file size -- dev. releases
Average .h file size -- stable releases
Median .h file size -- dev. releases

Consider this code…
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);

 if (err != NULL) {
 return err;
 }
 ap_threads_per_child = atoi(arg);
 if (ap_threads_per_child > thread_limit) {
 ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
 "WARNING: ThreadsPerChild of %d exceeds ThreadLimit "
 "value of %d", ap_threads_per_child,
 thread_limit);
 ….
 ap_threads_per_child = thread_limit;
 }
 else if (ap_threads_per_child < 1) {
 ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
 "WARNING: Require ThreadsPerChild > 0, setting to 1");
 ap_threads_per_child = 1;
 }
 return NULL;

const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
 if (err != NULL) {
 return err;
 }
 ap_threads_per_child = atoi(arg);
 if (ap_threads_per_child > thread_limit) {
 ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
 "WARNING: ThreadsPerChild of %d exceeds ThreadLimit "
 "value of %d threads,", ap_threads_per_child,
 thread_limit);
 ….
 ap_threads_per_child = thread_limit;
 }
 else if (ap_threads_per_child < 1) {
 ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
 "WARNING: Require ThreadsPerChild > 0, setting to 1");
 ap_threads_per_child = 1;
 }
 return NULL;

and this code … Major theme
Evidence-based program comprehension

• Understanding a software system means understanding its
parts, their inter-relationships, and their histories

• A software system is more than just compiled source code
– Myriad source artifacts + deployment environments + development

processes + supporting tools + developers + user community

• To understand the history of a software system, you have to
see the big picture through the lens of data analytics and
socio-technical context

Major theme
Evidence-based program comprehension

• To better understand people, we can use techniques
from social sciences (to produce data)
e.g., interviews (pre and post study), surveys, grounded theory

• To understand tools and processes, we can use
instrumentation (to produce data)

• To better understand software artifacts (and other data),
we can use techniques from data science
e.g., machine learning and LLMs, data mining, NLP, statistics

Major theme
Evidence-based program comprehension

• There are many, many kinds of development artifacts!
e.g., internal docs (requirements, design, testing), git commits (+
meta-data), issue tracking histories, build/deploy scripts, test
suites, developer mailing lists, execution logs, …

• Development artifacts have explicit internal structure and
both explicit and implicit interrelationships

• All of these artifacts have histories, so we can track evolution,
measure long term effects and costs, … over time

Other topics

• Data science applied to sw development artifacts:
– aka Mining Software Repositories / software analytics
– What can we do now? How accurate is it? How useful?
– Can we make sense of / link up the many kinds of

artifacts?
– Is there enough signal in the data?
– Are we enabling bad management?
– Actionable advice: Is that the gold standard?

Other topics
• AI4SE

– i.e., using AI techniques such as LLMs, NLP, ML to aid in software
engineering tasks: code review, defect prediction, code
summarization, code completion and recommendation

• SE4AI
– i.e., the design of specialized SE techniques to aid in developing

software systems that build around LLMs ("FMware")

• What is program comprehension?
– Mental models and cognition
– How can we evaluate comprehension?
– What is the value of software visualization?
– Does instrumenting IDEs provide useful knowledge?

Meta-topics

• What to do when the data is messy, incomplete,
noisy, ambiguous, wrong, …

• Measuring and metrics
– "Not everything that can be counted counts;
 not everything that counts can be counted."

• Use of statistics, machine learning, LLMs, …

Some of the readings
• "Cowboys, ankle sprains, and keepers of quality: How is video game

development different from software development?"

• "Can LLMs replace manual annotation of software engineering artifacts?"

• "Software Bertillonage: Finding the provenance of a software artifact"

• "Code today, deadline tomorrow: Procrastination among software
developers"

• "With great humor comes great developer engagement"

• "Wolves in the repository: A software engineering analysis of the XZ utils
supply chain attack"

Course text book

• Perspectives on Data Science for Software Engineering, 2016
Tim Menzies, Laurie Williams, Thomas Zimmermann (eds.)
– Very short, very readable chapters explaining key ideas, techniques, and

experiences applying data science techniques to software development
artifacts (aka software analytics aka Mining Software Repositories)

Logistics

http://plg.uwaterloo.ca/~migod/846

Some student feedback
• "This was probably the best class I've been in all the 17 years of my

education."

• "[Student] presentations were a good tool to improve one's speaking
skills."

• "[Prof] leads discussions [which were] helpful & motivating."

• "Very interesting material. Strong departure from the stuff I
normally see. Interesting to get a different set of opinions / topics /
points of view."

Some student feedback
• "Great selection of papers. [Prof] very knowledgeable; excellent at

leading interesting / informative discussions."

• "Paper selection was very good. The textbook was very helpful to
introduce the subject of empirical sw eng."

• "Interesting and diverse topics."

• "[Class atmosphere] was positive and calm."

• [The prof interrupted too much to add his own two cents /
background / opinions. Also, he nitpicked on presentation details,
which I found a bit off-putting. But I liked the course!]

I need (three + three) volunteers
for next week

1. "No silver bullet: Essence and accidents of software engineering", Fred
Brooks, IEEE Computer, April 1987.
– Presenter: Jacie Jermier
– Scribe: Youssef Souati

2. "The truth, the whole truth, and nothing but the truth: A pragmatic guide to
assessing empirical evaluation", Blackburn et al., ACM Trans. on
Programming Languages and Systems (TOPLAS), 38(4), Oct. 2016.
– Presenter: Brian Do
– Scribe: Tongwei Zhang

3. "Towards AI-native software engineering (SE 3.0): A vision and a challenge
roadmap", Hassan et al., arXiv, Oct. 2024
– Presenter: Asim Waheed
– Scribe: Michael Ogezi

CS846	—
Empirical	Software	Evolution	

Fall 2025, Tues 2:00-4:50pm

Mike Godfrey, DC2340
migod@uwaterloo.ca

@migod on twitter

