

Analyzing Pull-Request Failures in the AlDev Dataset

AI Coding Agents now author hundreds of thousands of PRs $\,$

But many PRs fail to be merged or are reverted

Our goal:

Understanding why

Why study PR failures?

PR acceptance = natural test of trust in AI teammates
Prior work^[1] showed agent PRs accepted far less than humans
Recent data suggests trend reversed

Understanding failures → Improving human-Al workflows

The AlDev Dataset

- 900,000+ agent-authored PRs across 100,000+ repos
- Metadata on PRs, reviews, comments and timelines
- Rich comparisons between agents and humans
- Useful to study PR failure across authors and contexts

Research Questions

RQ1: In what contexts are agentic PRs more likely to succeed than human PRs?

RQ2: What factors lead to rejection of agentic PRs?

RQ3: What practices make agentic PRs more successful?

PAGE 5

EARLY RESULTS

PAGE 6

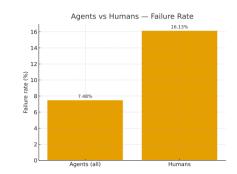
Agentic PRs fail less often

Failure Rate

- Agents: 7.48%
- Humans: 16.13%

Questions:

- Are agentic PRs more relevant?
- Difference in open vs. closed source?
- Is there a difference in code quality?



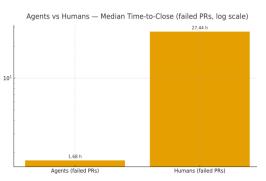
WATERLOO FACULTY OF MATHEMATICS

Agentic PRs are Rejected Much Faster

- Failed agentic PRs close in 1.68 hours
 - Humans in 27.4 hours
- · AI work is reviewed faster

Questions:

- Bias or something else?
- · Pipelines that use agents more efficient?



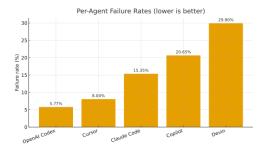
PAGE 8

Some agents perform better

- Codex has lowest failure rate (5.77%)
- Devin has the highest failure rate (29.9%)

Questions:

- · What kind of repos for each agent?
- Reasons of failure for each agent?



PAGE 9

Using LLMs to label PR rejection reasons

Natural question:

• Can PR rejection reasons be labelled by an LLM?

Relevance?

- Agent trained to submit a PR
- LLM trained to review $PR \rightarrow helps$ Agent
- Rejection reasons useful for reviewing

PAGE 10

Initial Experiment

Steps:

- Extract failed PRs
- 2. Create context files for each PR
- 3. Curate prompt to LLM

Currently done manually

Initial Experiment

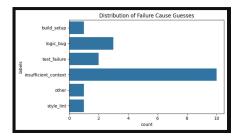
Randomly picked 15 rejected PRs

In general:

- Confidence was low
- Most PRs had insufficient context

Next steps:

Extract more information for each PR



Next Steps

Further analysis:

- Categorize PRs by size, repo activity, and complexity (RQ1)
- Identify rejection reasons e.g., redundancy, inactivity, merge conflicts (RQ2)
- Extract success patterns -> guidelines for future agents (RQ3)

PAGE 13

DISCUSSION

Why might agentic PRs appear more successful?

Are faster rejections a sign of bias or efficiency?

How could we fairly evaluate PR quality?

What is the least amount of contextual information we need?

What analyses would ≯ YOU ≯ like to see?

What could go wrong? (Threats to Validity)

- Labelling rejection reasons is quite difficult and varied^[1,2]
 - Defining labels beforehand leads to bias
- Differentiating between abandoned and rejected PRs
- Repo size or activity may bias results
- In general: controlling for confounding variables

[1] Zhang, X., Yu, Y., Gousios, G., & Rastogi, A. (2002). Pull Request Decisions Explained: An Empirical Overview. IEEE Transactions on Software Engineering, 49(4), 849–871. https://doi.org/10.1109/TSE.2002.016905/ [2] Goltigundala, T., Seresathlen, S., & dis Sha, Na. (2002). Qualitatively Analysis Ref. Refection Resons from Conversations in Open-Source Projects. 2002 IEEE/AGM 13th International Workshop on Cooperative and Human Aspects of Software Engineering (CHSSR), 009–112. https://doi.org/10.1109/CHSSE3885.201.00012.

PAGE 14

