
Tracking Dependencies and Security 
Risks in the Maven Architecture using 

Neo4J and Goblin Weaver
By Daniel Pang, Ahmed El Shatshat

The Problem ❓
● Software security will always and forever be more and more important 

● How can we leverage dependency management to improve security?

● Can we delve into Maven's history to see changes in dependency structure result 
in improved responses to security concerns?

The Data and Tools 🪛
● The Neo4J database of the enriched Maven 

Central dependency graph
○ This is needed for the CVEs and Freshness

● The Goblin Framework
● Simply, what is provided by the MSR 2025 

Mining Challenge

https://github.com/Goblin-Ecosystem 

https://2025.msrconf.org/track/msr-2025-mining-
challenge#Call-for-Mining-Challenge-Papers 

Research Questions 🔬
● 🕸 RQ1: Has Maven trended towards software architecture that has fewer 

dependencies over the years? 

● ⏱ RQ2: Has the trend in software dependencies resulted in faster software 
lifecycles?

● 🔐 RQ3: Has the frequency of software lifecycles affected security risks in Maven?



How to do the Work 📝
● The RQs lend themselves to a natural order
● As such the rough schedule of milestones follow the same order

a. Identification of appropriate artifacts that have potential to answer our research questions (large 
changes in dependency, security adjacency)

b. Extraction of relevant artifacts, and assessment that they are indeed relevant to our research
c. Analysis of artifacts and trends that can be found therein
d. Analysis of security risks of artifacts that have had large dependency changes
e. Compilation of research to form conclusions, writing of paper

Threats to Validity ⚠
● Difficult to prove a reduction in dependencies is a result of a refactoring or change 

in software architecture

● Different CVEs will naturally have different complexities
○ Inherent variance in priority, difficulty, etc. influencing response time

Problems that can be Mitigated 🩹
● No or few artifacts with notable trends in dependencies

○ Alternative approach: compare artifacts by number of dependencies in general
● Similar approach for RQ2 and RQ3

○ If there are no trends that can be seen from a high level, can compare artifacts more granularly
■ 2. Do artifacts with fewer dependencies have faster software life cycles?
■ 3. Do artifacts with faster software life cycles have faster responses to CVEs?


