
Tracking Dependencies and Security Risks in the Maven
Architecture using Neo4j and Goblin Weaver Proposal

By Daniel Pang, Ahmed El Shatshat

The Problem
Software security will always and forever be more and more important and dependency
management is crucial in maintaining secure software. The question becomes, how can we
leverage dependency management to better improve a system's security? Taking inspiration
from the many papers discussed in class as well as background research pertaining to software
architecture, one can see that how a software project is structured, and as such how
dependencies are formed in the software, can directly impact how quick the software lifecycle
can be and as such, how quickly security concerns can be addressed. Given that Maven has
been around over 20 years, one can expect changes in software architecture or simply changes
in dependency structures over its lifetime, providing a viewpoint on the relationship between
artifact dependency structure and security risks.

The Data and Tools
Fortunately, all the information that should be required for this line of research is included in the
Goblin framework as is, including the additional Weaver metrics used to enrich the Maven
Central dependency graph.

Simply, all that is required is the Neo4J database of the enriched Maven Central dependency
graph and the Goblin Weaver REST API. This is as is, provided by the MSR 2025 Mining
Challenge.

Research Questions
There are three research questions attached to this project.
RQ1: Has Maven trended towards software architecture that has fewer dependencies over the
years?
RQ2: If Maven has trended towards fewer dependencies, has this resulted in faster software
lifecycles?
RQ3: Has faster software lifecycles reduced security risks in Maven?

How to do the Work
Intentionally, the research questions have a natural order to them, that is, the former precedes
the latter. First, artifacts must be found that have made notable reductions in the number of
dependencies over the history of the project. Following that, upon finding said artifacts, find their
number of releases to see if these artifacts have a faster software release cycle, this will most
likely take the form of a median of freshness. Finally, for these artifacts with faster release
cycles, compare how quickly their responses are to CVEs in comparison to other CVEs in other
artifacts.

For a rough schedule of milestones.
M1: Identification of appropriate artifacts that have potential to answer our research questions
(large changes in dependency, security adjacency)
M2: Extraction of relevant artifacts, and assessment that they are indeed relevant to our
research
M3: Analysis of artifacts and trends that can be found therein
M4: Analysis of security risks of artifacts that have had large dependency changes
M5: Compilation of research to form conclusions, writing of paper

Threats to Validity
There are a few threats to validity that can be expected even at this stage. Firstly, without
delving deep into the code base itself, it is difficult to prove that a reduction in dependencies is a
result of a refactoring or change in software architecture. Secondly, different CVEs will naturally
have different complexities in how to handle them and as such a faster response to a CVE may
not be a result of a shorter software life cycle but could be a myriad of other factors such as the
CVE itself being an easier issue to handle.

There are also a few potential problems that can be mitigated through an adjustment in
research criteria. Firstly, if there are no or few artifacts with notable reductions in dependencies
over time, an alternative approach would be to attempt to compare artifacts by their number of
dependencies such that one would expect a trend that artifacts with fewer dependencies would
have shorter software lifecycles. Secondly, following that, if there are no such artifacts with
having shorter software lifecycles over the lifetime of the project, it would not be possible to see
if CVE response times have improved. In response to this possibility, another solution would be
to attempt to correlate CVE response times to software lifecycles in Maven Central as a whole.

	Tracking Dependencies and Security Risks in the Maven Architecture using Neo4j and Goblin Weaver Proposal
	By Daniel Pang, Ahmed El Shatshat
	The Problem
	The Data and Tools
	Research Questions
	
	How to do the Work
	Threats to Validity

