
CS846 Project Proposal: Tracking Dependency Updates &
Security: Do Bots Make a Difference?
Jaffer Iqbal

j2iqbal@uwaterloo.ca
University of Waterloo

Waterloo, Canada

Eimaan Saqib
e2saqib@uwaterloo.ca
University of Waterloo

Waterloo, Canada

ACM Reference Format:
Jaffer Iqbal and Eimaan Saqib. 2025. CS846 Project Proposal: Tracking De-
pendency Updates & Security: Do Bots Make a Difference?. In . ACM, New
York, NY, USA, 2 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Modern software projects heavily use open-source dependencies.
But managing these dependencies in large projects comes with risks
that include security risks, technical debt, compliance issues, etc.
Vulnerabilities in dependencies are a significant cause of software
breaches. For example, the 2021 Log4j vulnerability (CVE-2021-
44228) exposed millions of systems globally and demonstrated the
high risk of unpatched vulnerabilities in the software ecosystem [7].
A 2024 report by Synopsys found that 84% of open-source codebases
still contained at least one open-source vulnerability, while 74%
included high-risk vulnerabilities, marking a 54% increase from 2022
[2, p. 6]. This highlights the ongoing need for improved dependency
management and maintenance practices.

To address these challenges, automated dependency manage-
ment tools (often referred to as dependency management bots) have
been introduced to automate the process of updating dependencies.
Several tools provide automated dependency management services,
including GitHub’s Dependabot [4], Renovate Bot [6], Snyk [9],
and Depfu [1], which have been developed to help maintain depen-
dency hygiene, security, and software updates. While these tools
are used across open-source projects, their effectiveness in real-
world ecosystems such as Maven Central (the largest repository of
Java libraries) remains unclear. To make informed investment and
adoption decisions, organizations need empirical evidence of how
these tools impact software security, maintenance practices, and
dependency stability within large-scale open-source projects.

This study seeks to bridge this gap by evaluating the effective-
ness of Dependabot, Renovate Bot, Snyk, and Depfu’s dependency
management practices within the Maven ecosystem.

2 DATASET AND TOOLS
This study will use the Goblin framework, a Neo4J-based depen-
dency graph of Maven Central artifacts, that has millions of nodes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

that represent libraries and their releases. We will use Goblin’s
Weaver tool to compute metrics such as dependency freshness
(time since the latest version of a dependency was adopted) and
vulnerability exposure windows (days between a vulnerability’s
disclosure and the adoption of its patched version).

Our study focuses on analyzing the impact of automated de-
pendency management tools, specifically GitHub Dependabot,
Renovate Bot, Snyk and Depfu. To identify the relevant open
sourced projects that use these tools, we will use the GitHub API
and get configuration files and CI/CD workflows (see Section 3). We
will use Python libraries like Pandas, Scipy, and Plotly to perform
statistical analysis and visualize trends in dependency management
behavior.

3 RESEARCH QUESTIONS
(1) RQ-1: How often do projects update their dependencies,

and what factors influence this frequency (e.g., project size,
popularity, type)?

(2) RQ-2:What is the average time taken to patch vulnerabilities
in dependencies, and how does this vary across projects?

(3) RQ-3: Does the adoption of dependency management bots
correlate with reduced dependency update latency and vul-
nerability exposure windows?

4 METHODOLOGY
This project will have the following three phases:

Phase 1: We will establish baseline trends by analyzing Maven
projects stratified by size (number of dependencies or lines of
code), type (libraries, applications, or frameworks – inferred from
metadata and repository descriptions), and popularity (dependents,
GitHub stars), etc. The Goblin dependency graph will be used to
calculate dependency update frequency and vulnerability patch-
ing times. Statistical analysis will be used to identify relationship
between project attributes and dependency management behavior.

Phase 2: We will evaluate the impact of the dependency man-
agement tools as case studies. To identify open-source projects
utilizing these tools, we will first query the GitHub API [3] to locate
repositories containing relevant configuration files, CI/CD work-
flow definitions, or automated pull request activity. For instance,
in the case of Dependabot, we first look for repositories contain-
ing the dependabot.yml configuration file. Repositories with a
dependabot.yml file are assumed to use GitHub’s Dependabot to
automate dependency updates and management, as highlighted
in [5]. Once a repository is confirmed to have this file, we will
extract its Group ID and Artifact ID and use them to query the
Maven Central Repository [8] to verify whether the project exists

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference’17, July 2017, Washington, DC, USA Iqbal and Saqib

as a publicly available artifact. Finally, with this information, we
will leverage the Neo4J Maven Central dependency graph and exe-
cute Cypher queries to filter and analyze the relevant artifacts and
release data within the dependency graph.

Phase 3: We will combine the results of the statistical analysis
to generate visualizations, insights, and inferences. We will produce
a final report to summarize the findings.

4.1 Milestones
• Week 1-2: Data extraction from Maven Central and GitHub
API integration

• Week 3-4: Statistical analysis of baseline trends
• Week 5-6: Case study data collection and hypothesis testing
• Week 7: Gathering insights and preparing final report

5 THREATS TO VALIDITY
Repositories containing a .yml configuration file (like dependabot.yml)
may not actively use the dependency management bot. This can
occur due to several reasons, such as mis-configured settings, dis-
abled automation, archived or inactive repositories, or a lack of
dependencies matching the update criteria. To mitigate this, we can
verify active bot usage by checking for pull requests authored by
the bot, analyzing commit histories for dependency updates, and
querying repository settings to confirm if the bot is enabled. This

ensures that only repositories with demonstrable bot activity are
considered.

There is also a risk of selection bias as projects using dependency
management bots may inherently prioritize security and better
dependency management as compared to other projects, which
could skew results. To mitigate this, we will try to use control
groups of similar project size, popularity, and domain. Moreover,
causal ambiguity will need to be acknowledged (correlation does
not equal causation). If time permits, we will try to perform a
longitudinal study to isolate tool impact.

REFERENCES
[1] Depfu. [n. d.]. Depfu. https://depfu.com/.
[2] Synopsys Black Duck. 2024. Open Source Security and Risk Analysis Report. Techni-

cal Report. Black Duck by Synopsys. 18 pages. https://www.blackduck.com/
resources/analyst-reports/open-source-security-risk-analysis.html Accessed:
2024-02-21.

[3] GitHub. [n. d.]. Github REST Api Documentation. https://docs.github.com/en/
rest?apiVersion=2022-11-28

[4] Github. [n. d.]. GitHub’s Dependabot. https://github.com/dependabot.
[5] Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. 2023. Automating depen-

dency updates in practice: An exploratory study on github dependabot. IEEE
Transactions on Software Engineering 49, 8 (2023), 4004–4022.

[6] Michael Kriese. [n. d.]. Renovate Bot. https://github.com/renovatebot.
[7] Red Hat Customer Portal. [n. d.]. 2021 Log4j vulnerability (CVE-2021- 44228.

https://access.redhat.com/security/cve/cve-2021-44228.
[8] Sonatype. [n. d.]. Maven Central Repository Search.

https://central.sonatype.com/?smo=true.
[9] Synk. [n. d.]. Synk Bot. https://github.com/snyk-bot.

https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28

	1 Introduction
	2 Dataset and Tools
	3 Research Questions
	4 Methodology
	4.1 Milestones

	5 Threats to Validity
	References

