## **Automated vs. Human Security Patching** Patterns in Pull Requests: Evidence from the **AlDev Dataset**

12/2/2025

Felix Wang, Brian Do, Jacie Jermier



WATERLOO

#### **Motivations**

- The rapid emergence of autonomous coding agents
- Productivity gains vs. Trustworthiness
- Security patches are difficult to produce and review due to the specialized domain knowledge
- => How do security patches generated by AI coding agents differ from those authored by human developers?

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 2



WATERLOO

### **Prior Research**

- 1. Agent-created Pull Requests
- Security-related Pull Requests
- Categorizing Security Patches

#### **Prior Research**

#### **Agent Created Pull Requests**

- Why are people loving agents?
  - Easy to integrate into GitHub Projects.
  - · Monitor vulnerability databases in real-time.
  - Agent-generated configuration files are stable most of the time.
- Why are people hating agents?
  - Excessive notifications.
  - Developers don't know how to communicate with agents.
  - · Sometimes take wrong actions.







#### **Prior Research**

#### **Security-related Pull Requests**

- Polarizing trend:
  - · The vast majority are merged within one day after creation.
  - ~35% of security PRs remain open and unattended for long periods.
- Average vulnerability exposure lifetime: 512 days.
- Main reasons why pull requests (PRs) are not merged:
  - PR is superseded by newer PRs.
  - Dependency is already updated or removed, or not updatable.
  - PR has high complexity.

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 5



#### **Prior Research**

#### **Categorizing Security Patches**

- Prior work demonstrated the applicability of incorporating LLM to categorize security patches on a scope of memory-related vulnerabilities.
- GraphSPD -> identifying security patches by binary outputs.
- TREEVUL -> classifying CWEs based on a dataset drawn from the CVE database with CWE annotations.

Automated vs. Human Security Patching Patterns in Pull Requests: Evidence from the AIDev Dataset

PAGE 6



## **Research Gap**

- Understanding of the characteristic of security patches at the level of vulnerability types:
  - Whether agent-generated patches address different categories of weaknesses than human-authored patches.
  - Whether certain vulnerability classes are disproportionately represented in agent-generated pull requests.

PAGE 7

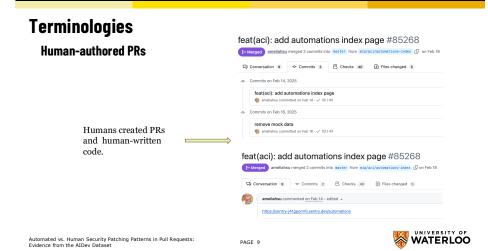
## **Terminologies**

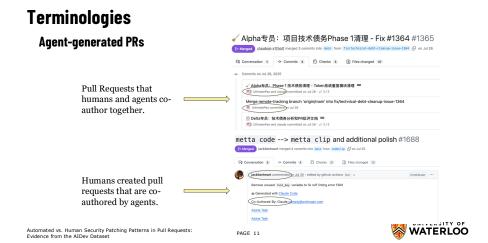
- CWE: Common Weakness Enumeration community-developed dictionary of software and hardware weaknesses that have the potential to lead to security vulnerabilities.
- CWE abstraction levels:
  - Pillar-level
  - Class-level
  - Base-level
  - Variant-level
  - Chain-level

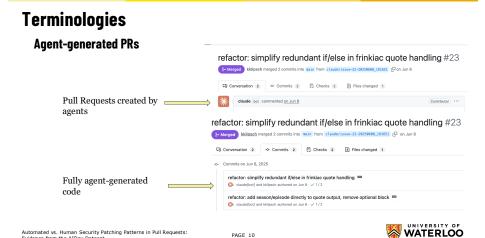












## **Research Objectives**



### **Research Question #1**

- How do human-authored and agent-generated security-related PRs differ in their size and proportion?
- Current Research:
  - · Improving LLM-based coding agents' trustworthiness itself.
  - Focusing on code-snippets, not real-world large-scale Pull Requests.
  - Only on subdomains of LLM coding agents' vulnerabilities (Dependencies, Memory-related, etc.).
  - A **holistic** comparison between human-authored and agent-generated security patches remains a research gap.

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 13



## **Research Question #3**

- How do human-authored and agent-generated security-related PRs differ in the distribution of abstract CWE type grouping they address?
- Current Research:
  - Specific CWE labels are different from broader security behavioral groupings.
  - Group them into different security concern categories.
  - Discover security reasoning patterns.



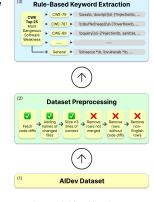
### Research Question #2

- What are the most common CWE types that occur in human-authored and agent-generated PRs?
- Current Research:
  - Different coding agents tend to address different categories of security vulnerabilities.
  - We can determine whether agents disproportionately introduce or modify particular categories of vulnerabilities.

Automated vs. Human Security Patching Patterns in Pull Requests: Evidence from the AIDev Dataset PAGE 14



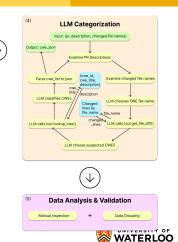
## Methodology



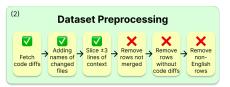
The pipeline of the dataset security patch identification

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 16



#### Step 1 - Dataset Preprocessing



- · First fetch from AIDev.pr\_commit\_details table.
- GitHub API Endpoint: https://patch-diff.githubusercontent.com/raw/ [org\_name]/[repo\_name]/pull/[pr\_number].patch
- 20.76% of human-authored PRs were excluded.
   8.69% of agent-generated PRs were excluded

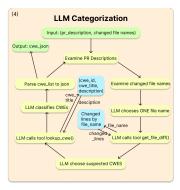
| files_changed                                                                                                 | code_diff                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [ "a/dev-packages/node- integration-tests/package.json b/dev-packages/node-integration- tests/package.json" ] | === CHUNK a/dev-packages/node-integration-tests/package.json b/dev-packages/node-integration-tests/package.json === "dependencies": " "@aws-sdl/client-s3": "^3.552.0", "@hapl/hapl": "^21.3.10", "@hestsl/common": "10.4.6", "@nestsl/common": "11.0.16", "@nestsl/common": "11.0.6", "@nestsl/common": "10.4.6", "@nestsl/common": "10.4.6", "@nestsl/common": "10.4.6", "@sentry/aws-serveriess": "9.12.0", |

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 17



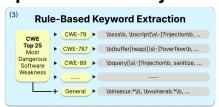
## Step 3 - LLM Categorization



- LLM Selection: GPT-OSS-120B
   Contextual reasoning ability and classification ability into classes with subtle differences
- Input token limit: 30,000
   Total token limit: 40,000
   Completion token limit: 1000
- 0.85% of human PRs exceed token limit 0.48% of agent PRs exceed token limit
- · Return template:

WATERLOO

### Step 2 - Rule-Based Keyword Extraction



- Retrieves a broad set of potentially security-related PRs with a high recall.
- 11.76% of human-authored PRs retrieved 10.42% of agent-generated PRs were retrieved



General Vulnerability-related Keywords

WATERLOO

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 18

## Step 4 - Manual Inspection

- Manually security patch classification result and the CWE classification result.
- Inspected 7 (Human PRs) + 99 (Agent PRs).
- $\kappa = \frac{p_o p_e}{1 p_e}$
- For the security patch classification result, we ask 2 independent voters: Is this a security patch?
- For the CWE classification result, we ask 2 independent voters: Is the LLM's classification accurate?

## **Results**

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 21



## **Classification Reliability**

- Substantial Agreement for Security PR Classification:
  - o LLM's security/non-security labels largely align with human judgments.
- Only Moderate and Fair Agreement for CWE Classification:
  - o We are only moderately or fairly sure that the human PRs and Agentic PRs are correctly classified.

| Dataset                     | N  | κ      | Interp. (n)  |
|-----------------------------|----|--------|--------------|
| (A) Security Classification |    |        |              |
| Human Pull Requests         | 7  | 0.6912 | Subst. (3)   |
| Agentic Pull Requests       | 99 | 0.7472 | Subst. (3)   |
| (B) CWE Classification      |    |        |              |
| Human Pull Requests         | 7  | 0.5882 | Moderate (2) |
| Agentic Pull Requests       | 99 | 0.2137 | Fair (2)     |

| Fleiss Kappa | Interpretation        |  |  |
|--------------|-----------------------|--|--|
| < 0.00       | Poor agreement        |  |  |
| 0.00 to 0.20 | Slight agreement      |  |  |
| 0.21 to 0.40 | Fair agreement        |  |  |
| 0.41 to 0.60 | Moderate agreement    |  |  |
| 0.61 to 0.80 | Substantial agreement |  |  |
| 0.81 to 1.00 | Almost perfect        |  |  |

| Cohen's Kappa | Interpretation         |  |  |
|---------------|------------------------|--|--|
| 0             | No agreement           |  |  |
| 0.10 - 0.20   | Slight agreement       |  |  |
| 0.21 - 0.40   | Fair agreement         |  |  |
| 0.41 - 0.60   | Moderate agreement     |  |  |
| 0.61 - 0.80   | Substantial agreement  |  |  |
| 0.81 - 0.99   | Near perfect agreement |  |  |
|               |                        |  |  |

Source 1: https://www.statology.org/cohens-kappa-statistic/ Source 2: https://www.researchgate.net/figure/Fleiss-Kappa-and-Inter-rater-agreement-interpretation-24\_tbl3\_281652142

WATERLOO

## **Classification Reliability**

```
• Fleiss's kappa (
    is_security_patch_voter_1,
    is_security_patch_voter_2,
    is_security_patch_llm_pred
```

```
    Cohen's kappa (

    is llm cwe lst correct voter 1,
    is llm cwe lst correct voter 2
```

| Dataset                     | N  | κ      | Interp. (n)  |
|-----------------------------|----|--------|--------------|
| (A) Security Classification |    |        |              |
| Human Pull Requests         | 7  | 0.6912 | Subst. (3)   |
| Agentic Pull Requests       | 99 | 0.7472 | Subst. (3)   |
| (B) CWE Classification      |    |        |              |
| Human Pull Requests         | 7  | 0.5882 | Moderate (2) |
| Agentic Pull Requests       | 99 | 0.2137 | Fair (2)     |
|                             |    |        |              |

Automated vs. Human Security Patching Patterns in Pull Requests:

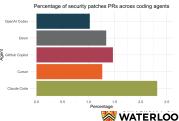
PAGE 22



#### **Results**

#### **RQ1: Proportion & size of Security-related PRs**

- Agent-generated security-related PRs are roughly one-third of those authored by human:
  - o 3.26% of **human-authored** PRs are security-related (169 PRs)
  - o 1.18% of agent-generated PRs are security-related (10,001 PRs)
- Across individual agents,
- o 2.32% of PRs by Claude Code are security-related
- o 1-1.5% of PRs by other agents are security-related



Automated vs. Human Security Patching Patterns in Pull Requests:

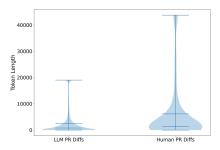
PAGE 24



#### Results

#### **RQ1: Proportion & size of Security-related PRs**

- Human-authored security-related PRs contain more code changes and more descriptive context
  - o ~3261 code tokens and ~1217 description tokens per human-authored PRs
  - o ~2480 code tokens and ~182 description tokens per agent-generated PRs



Distribution of token length of code diffs (trimmed at the 95th percentile)

WATERLOO

Automated vs. Human Security Patching Patterns in Pull Requests: Evidence from the ATDev Datase

PAGE 25

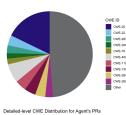
#### Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 26

#### **Results**

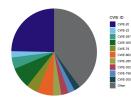
#### **RQ2: Most commonly occurred CWE types**

- CWE-20 (Improper Input Validation) appeared most frequently in both human-authored and agent-generated PRs.
- Human-authored PRs emphasize **resource** management (CWE-400, 1104, 1395)
- Agent-generated PRs target authentication and authorization (CWE-306, 862, 287)



Detailed-level CWF Distribution for Human's PRs

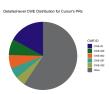


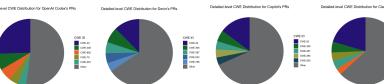


#### Results

#### **RQ2: Most commonly occurred CWE types**

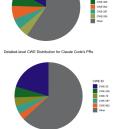
 CWE-20 and CWE-306 (Missing Authentication for **Critical Function)** appear most frequently for all agents.





Automated vs. Human Security Patching Patterns in Pull Requests: Evidence from the AIDev Datase

PAGE 27

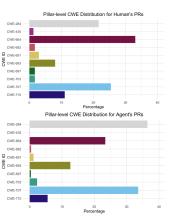


WATERLOO

## **Results**

### **RQ3: Distribution of abstract CWE type groupings**

- Human-authored PRs focus more on resource management throughout the resource lifetime (CWE-664) and adherence to coding standards (CWE-710).
- Agent-generated PRs disproportionately emphasize access control (CWE-284) and input neutralization (CWE-707).





## **Discussion**

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 29



## Discussion: What did we actually learn?

- Agents touch CWE Top-25 code ~3× less often than humans
- When they do touch it they have nearly identical CWE distribution (same top 4: CWE-20, -79, -306, -22)
- Current real-world AI coding agents are not flooding repositories with insecure changes

   they are actually avoiding or being steered away from the most dangerous weakness classes that humans manage.



https://en.wikipedia.org/wiki/Agent\_Smith

Automated vs. Human Security Patching Patterns in Pull Requests: Evidence from the AIDev Dataset

PAGE 30



## Discussion: How do agents handle CWE-20?

- 81 % of agent fixes use structured, template-style validation (allow-lists, schema validation, required fields, regex/format checks) i.e. "textbook" patterns are often easier to review and maintain.
- Humans often contain more ad-hoc/localized fixes (custom logic that fits only that exact spot).
- Agents favor systematic, reusable patterns that are easier to audit and scale

## Discussion: Why so many human false positives?

- 47.6 % of human "CWE-20" PRs were actually dependency / lock-file bumps (hashes, version strings trigger keywords + LLM).
- Only 4 % of agent "CWE-20" PRs had the same problem.
- The measured human security-touch rate (3.26 %) is inflated.
  - The real ratio is probably closer to 3-4:1



#### Discussion: What do we do with this information?

- Routine tasks (features, refactors, dependency updates) can safely be delegated to agents.
- High-risk CWE changes (CWE-20, -79, -306, -22) should be kept as human in the loop or extra review.
- There doesn't seem to be a need to treat agent & human PRs differently in security review (no panic button needs to be pressed).
- Companies can adopt AI agent integration for non-critical code without the fear or paranoia of an increase in high-severity security risk.
- Use our open-source pipeline to automatically flag Top-25 touches.
- Current real-world agents are more conservative than humans on the most dangerous vulnerabilities.

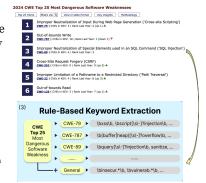
Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 33



### **Internal Validity - Keyword Selection Bias**

- Keywords derived from the "2024 CWE Top 25 Most Dangerous Software Weakne sses" combined with generic vulnerability terms.
- · This may:
  - Over-represent certain CWEs.
  - Miss subtle case.
  - Sequential design propagating errors through rest of pipeline.
- · Manual Validation showed:
  - o Security-related: κ = 0.69-0.75
    - Despite keyword selection bias binary classification is reliable
    - Reported proportions (3.26 % human vs. 1.18 % agent) are trustworthy.





#### **Future Work**

- 1. Extend to other languages (C/C++, Rust, Go, Java) where memory-safety issues dominate.
- 2. Temporal study track whether agents become more (or less) security-active as models mature. Do vulnerabilities become more evident or remain mostly the same?
- 3. Distinguish fixes vs. introductions pair AIDev with vulnerability databases (i.e., CVE-linked commits, GitHub Advisories, NVD, OSS-Fuzz).
- Cross-model validation combine heavy reasoning LLM (GPT-OSS-120B) with code-specialized models (Qwen-Coder, DeepSeek-Coder).

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 34



## **Internal Validity - Context Slicing Bias**

- We extract ±3 lines around the modified line to preserve contextual richnes s for LLM's categorization.
- A fixed slicing window cannot fully capture the data flow and control flow and give enough context to the LLM, possibly leading to some misclassifications.
  - Cannot capture distant sanitizers, auth checks, macro definitions etc...
- Many false positives in human PRs were dependency / package-lock bumps that contained CWE-related keywords. Showing context slicing wasn't the primary driver of misclassifications

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 36



## **Internal Validity - LLM Categorization Bias**

- We are using LLMs to categorize PRs into CWEs.
- Even with identical prompt + code, an LLM can sometimes output different CWE labels on separate runs.
- Causes: internal randomness, silent model updates, tokenization quirks, JSON formatting differences.
- Manual validation showed:
  - Exact CWE label:  $\kappa = 0.21-0.59$  (worse on agents)
    - Fine-grained CWE distribution has more noise but does not affect our core finding(agents touch high-risk code far less often).

Automated vs. Human Security Patching Patterns in Pull Requests:

Automated vs. Human Security Patching Patterns in Pull Requests:

PAGE 37



## **External Validity - Temporal Limitations**

- The security patching practices evolve rapidly. Therefore, this dataset may not
  fully reflect future developments in agent-assisted coding workflow.
- Our findings are limited to data from December 2024 to July 2025.

## **External Validity - Dataset bias**

- · AIDev Significant class imbalance.
- Fully human PRs only ~6.6k.
   After filtering: 617 rows (11.76%)
- Fully Agent PRs only ~932k.
  After filtering: 91,694 rows (10.42%)



Automated vs. Human Security Patching Patterns in Pull Requests: Evidence from the AIDev Dataset

PAGE 38



## **Ouestions**





# Thank you for listening!

