
Tracking Dependency Updates &
Security: Do Bots Make a

Difference?

Eimaan Saqib & Jaffer Iqbal
74% open-source codebases
contain at least one
open-source vulnerability
(2024 Synopsys report)

Background

2021 Log4j vulnerability
exposed millions of systems

Risks in dependency
management
● Security risks
● Technical debt
● Compliance issues

Automated Dependency
Management Tools

Automatically open Pull
Requests

Update dependencies on a
collaborative platform
like GitHub

Why?

Dependabot, RenovateBot,
SnykBot, Depfu

Research Questions
RQ-1: What is the average Dependency
Freshness in projects and how does it vary
across projects of different sizes, popularity
and type?

RQ-2: What are the average Vulnerability
Exposure Windows in projects, and how do
they vary across projects of different sizes,
popularity, and type?

RQ-3: Does the adoption of dependency
management bots correlate with reduced
Dependency Freshness Vulnerability
Exposure Windows?

Dataset & Tools
Goblin Framework (represents libraries and

releases)
● 15,117,217 nodes
● 658,078 artifacts
● 14,459,139 releases
● 44,035,495 AddedValue Nodes
● Querid via Cypher
● 77,393 vulnerable releases (1411

artifacts)
● 197,186 artifacts depending on these

directly
● GitHub API for metrics and identifying

projects
● OSV API

● Size: Number of Dependencies + LoC
● Popularity: Number of Dependents + GitHub Stars
● Project Type
● Straightforward for numDependencies and numDependents
● Not so straightforward for the rest!
● 658,078 artifacts -> reduced set of 38,794 artifacts

Gathering Project Metrics
for Stratified Analysis

● The time elapsed between the adoption of a dependency by a project
and the latest available release of that dependency

● Artifact -> Release -> DependencyVersion (t0) —--->
mostRecentVersionOfDependency (t1)

● Aggregate across all releases
● Mean Dependency Freshness + Summary Stats (median+max+min)

Identifying Dependency
Freshness

● The windows of time in which an
artifact is vulnerable

● ExposureStartTime,
ExposureEndTime,
cvePublishTime, cveFixTime

● A ->R -> dep -> B1
● A -> R ->dep -> B7 OR A x B
● No fixes for 29.4% of vulnerable

Artifacts (415/1411)

Identifying Vulnerability
Exposure Windows

Identifying Dependency Freshness
and Vulnerability Exposure Windows

in Control and Test Group
38,794 artifacts

36,292 artifacts 2,502 artifacts

2,502 artifacts
dependabot.yml

● Queried GitHub API for dependabot.yml file
● Control group (36,292) vs treatment group (2502)
● Insufficient representation of bot usage other than Dependabot

ANALYZING DEPENDABOT
IMPACT

RESULTS
AVERAGE DEPENDENCY FRESHNESS

RESULTS
AVERAGE DEPENDENCY FRESHNESS

RESULTS
AVERAGE DEPENDENCY FRESHNESS

RESULTS
AVERAGE DEPENDENCY FRESHNESS

RESULTS
AVERAGE DEPENDENCY FRESHNESS

● Negative correlation for lines of code and number of dependents
● Positive correlation for GitHub stars
● P-values <0.05

RESULTS
VULNERABILITY EXPOSURE WINDOW

RESULTS
VULNERABILITY EXPOSURE WINDOW

RESULTS
VULNERABILITY EXPOSURE WINDOW

RESULTS
VULNERABILITY EXPOSURE WINDOW

RESULTS
VULNERABILITY EXPOSURE WINDOW

● Negative correlation for number of dependents and GitHub stars
● Positive correlation for lines of code
● P-values <0.05

RESULTS
IMPACT OF DEPENDABOT ON VULNERABILITY EXPOSURE

WINDOW

● T-statistic: -1.33, P-value: 0.18
● U-statistic: 188886.5, P-value:

0.1655

RESULTS
IMPACT OF DEPENDABOT ON AVERAGE DEPENDENCY

FRESHNESS

● T-statistic: 5.93, P-value: 3.3E-9
● U-statistic: 4345206, P-value:

9.47E-9

Threats to Validity
1: Repositories containing a .yml
configuration file (like
dependabot.yml) may not
actively use the dependency
management bot

Verify active bot usage by
checking for pull requests
authored by the bot, analyzing
commit histories for dependency
updates, checking config settings

2: Selection bias could skew
results

Use control groups of similar
project size, popularity, and
domain.

3: Causal ambiguity in the
findings

Perform longitudinal study to
isolate tool impact.

