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1 ABSTRACT
Modern software systems rely heavily on open-source dependen-
cies, which introduces challenges in managing security, freshness,
and maintenance at scale. Dependency management bots like De-
pendabot aim to automate updates, but their real-world impact
remains underexplored. This study investigates how projects on
Maven Central manage dependency updates and respond to vulner-
abilities, introducing metrics such as Dependency Freshness and
Vulnerability Exposure Windows. By analyzing over 38,000 arti-
facts, we evaluate the variation of these metrics across projects of
different sizes, popularity, and types. Our findings reveal that while
Dependabot adoption significantly improves dependency freshness,
its effect on reducing vulnerability exposure windows is statisti-
cally insignificant. These results offer empirical insights into the
strengths and limitations of automated dependency management
practices.

2 INTRODUCTION
Modern software projects heavily use open-source dependencies.
But managing these dependencies in large projects comes with risks
that include security risks, technical debt, compliance issues, etc.
Vulnerabilities in dependencies are a significant cause of software
breaches. For example, the 2021 Log4j vulnerability (CVE-2021-
44228) exposed millions of systems globally and demonstrated the
high risk of unpatched vulnerabilities in the software ecosystem
[13]. A 2024 report by Synopsys found that 84% of open-source
codebases still contained at least one open-source vulnerability,
while 74% included high-risk vulnerabilities, marking a 54% increase
from 2022 [2, p. 6]. This highlights the ongoing need for improved
dependency management and maintenance practices.

To address these challenges, automated dependency manage-
ment tools (often referred to as dependency management bots) have
been introduced to automate the process of updating dependencies.
Several tools provide automated dependency management services,
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including GitHub’s Dependabot [5], Renovate Bot [9], Snyk [14],
and Depfu [1], which have been developed to help maintain depen-
dency hygiene, security, and software updates. While these tools
are used across open-source projects, their effectiveness in real-
world ecosystems such as Maven Central (the largest repository of
Java libraries) remains unclear. To make informed investment and
adoption decisions, organizations need empirical evidence of how
these tools impact software security, maintenance practices, and
dependency stability within large-scale open-source projects.

This study seeks to bridge this gap by evaluating the effectiveness
of Dependabot’s dependency management practices within the
Maven ecosystem.

Our research objective is divided into three research questions.
We define Dependency Freshness as the time elapsed between the
adoption of a dependency by a project and the latest available
release of that dependency, and Vulnerability Exposure Windows as
windows of time in which an artifact is vulnerable - these windows
are divided into 3 sub-types as defined in Table 1.

(1) RQ-1:What is the averageDependency Freshness in projects,
and how does it vary across projects of different sizes, popu-
larity, and type?

(2) RQ-2: What are the average Vulnerability Exposure Win-
dows in projects, and how do they vary across projects of
different sizes, popularity, and type?

(3) RQ-3: Does the adoption of dependency management bots
correlate with reduced Dependency Freshness Vulnerability
Exposure Windows?

Our findings provide practical insights into how these tools per-
form in the real-world software. Specifically, we highlight their
impact on maintenance practices across diverse Java projects on
Maven Central. In doing so, we advocate for the informed and
strategic adoption of dependency management bots to improve the
dependency freshness in large-scale software systems.

3 METHODOLOGY
3.1 Dataset and Tools
This study makes the use of the Goblin framework [8], a Neo4J-
based dependency graph of Maven Central artifacts and releases.
This graph (with_metrics_goblin_maven_30_08_24.dump[7]) is
a snapshot of the dependency graph dated on 30 Aug 2024, compris-
ing of 15,117,217 nodes (658,078 artifacts and 14,459,139 releases)
that can be queried via Cypher [10]. The dataset also contains
44,035,495 AddedValue nodes with additional information like CVEs
affecting a release (sourced from a copy of the OSV dataset [12])
and precomputed metrics like popularity and freshness. We find
77,393 releases (belonging to 1,411 artifacts) containing at-least one
CVE, and 197,186 unique artifacts depending on these vulnerable
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releases in their lifetimes. We use the GitHub API [3] to find open-
sourced projects using Dependabot in their pipeline. Finally, we
use Python libraries like Pandas, Scipy, and Plotly to perform
statistical analysis and visualize trends in dependency management
behavior.

3.2 Gathering Project Metrics for Stratified
Analysis

We stratify Maven artifacts (i.e. projects) based on their size, popu-
larity and type. We consider a project’s Number of Dependencies
(numDependencies) and Lines of Code (LoC) as indicative of its
size as they reflect a project’s complexity and development scale.
To measure a project’s popularity, we look at its Number of De-
pendents (numDependents) and GitHub , as they reflect ecosystem
reliance and community interest. Finally, we find the project’s type
(type), which is an indicator of its intended usage in the Maven
Ecosystem. The classification of project types is determined using a
combination of heuristic checks and external data sources. Initially,
the artifact name is checked for keywords; the project is classified
as a framework or application. If the number of dependencies is
greater than 1000, the project is classified as a framework, while
fewer than 10 dependencies result in classification as an applica-
tion. If the project has a GitHub repository, the repository’s topics
are fetched to check for keywords such as "framework" or "sdk"
(indicating a framework) or "cli" or "app" (indicating an application).
The project’s POM file is also checked for packaging information
and plugins; if specific plugins like spring-boot-maven-plugin or
wildfly-maven-plugin are found, it is classified as an application.
If none of these conditions are met, the project is classified as a
library.

Finding numDependencies and numDependents was straightfor-
ward for all 658,078 artifacts by querying the dependency graph.
However, the remainingmetrics (LoC, GitHub stars and type) had to
be fetched by making muliple queries to the GitHub API per project.
Since the GitHub API enforces strict rate limits [4], it was not feasi-
ble to retrieve these metrics for all 658,078 artifacts. We were able
to gather these metrics for a set of 38,794 randomly chosen artifacts.
To ensure consistent comparisons across all stratification dimen-
sions, we limit our analysis to this reduced set of 38,794 artifacts —
despite having numDependencies and numDependents available
for the full set of 658,078 artifacts.

3.3 Identifying Dependency Freshness
Dependency Freshness is defined as the time elapsed between the
adoption of a dependency by a project and the latest available
release of that dependency. In other words, it quantifies how out-
of-date a project’s dependency is relative to its most recent version.
This was computed by querying the dependency graph. To com-
pute, we first identify each project’s release that includes a specific
dependency, then determine the most recent release timestamp of
that dependency from the broader ecosystem. The freshness for
that dependency is calculated as the difference (in days) between
the project’s adoption timestamp and the dependency’s latest re-
lease timestamp. By aggregating these freshness values across all
releases of a project, we compute summary statistics (average, me-
dian, maximum, and minimum freshness) which provide insight

Table 1: Summary of Vulnerability Exposure Windows and
Their Descriptions.

Exposure
Window Type

Description

True Exposure
Window

(exposureEndTime - exposureStartTime),
quantifies the total duration an artifact
remains vulnerable.

Known Exposure
Window

(exposureEndTime - cvePublishTime), cap-
tures the period during which the vulner-
ability was publicly disclosed yet unad-
dressed.

Patch Lag Window (exposureEndTime - cveFixTime), reflects
the delay between the fix release and the
project’s adoption of a non-vulnerable
version.

into how proactively projects update their dependencies and miti-
gate potential risks associated with outdated components.

3.4 Identifying Vulnerability Exposure
Windows

Vulnerability Exposure Windows are defined as windows of time in
which an artifact is vulnerable because it depends on a dependency
that is known to be vulnerable. For an artifact A that depends on
artifact B containing known vulnerable releases, we use Cypher
queries to find the oldest release of artifact A (artifactA_Release0)
which depends on a vulnerable release of artifact B and record
its timestamp as the Starting Time of Exposure to Vulnerability
(exposureStartTime). Next, we find the oldest release of artifact A
(following artifactA_Release0) which no longer depends on a vul-
nerable release of artifact B and record its timestamp as the Ending
Time of Exposure to Vulnerability (exposureEndTime). We query the
OSV API [11] to find the time when the specific CVE was published
(cvePublishTime) and the time when a fix was released for that
CVE(cveFixTime). We find that fixed versions were not published
for 996/1411 ( 29.4%) of afflicted artifacts in the dependency graph.

We divide the vulnerability exposure windows into three sub-
types as shown in Table 1. The True Exposure Window indicates the
total risk period during which a project remains vulnerable, serving
as a baseline measure of exposure. The Known Exposure Window
highlights the period when the vulnerability has been publicly
disclosed but remains unaddressed, emphasizing the window of
external pressure and potential exploitation. Finally, the Patch Lag
Window reflects the delay between the availability of a fix and
its adoption by the project, serving as an indicator of a project’s
responsiveness and efficiency in mitigating vulnerabilities. Note
that an artifact A may depend on multiple vulnerable artifacts
(e.g., B and C), each with its own set of exposure windows. To
obtain a single value for each exposure window sub-type for artifact
A, we average the corresponding sub-type windows across all its
vulnerable dependencies. For example, the True Exposure Window
for A is calculated by averaging the True Exposure Windows from
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dependencies B and C, and similarly for the Known Exposure and
Patch Lag Windows.

3.5 Identifying Dependency Freshness and
Vulnerability Exposure Windows in Control
and Test Group

Once the project metrics, dependency freshness and vulnerabil-
ity exposure windows have been computed for our reduced set of
randomly chosen 38,794 artifacts, we partition it into two groups:
artifacts that do not use Dependabot for automated dependency
management (36,292), and artifacts that do (2,502). To perform a
direct comparison between these two groups and establish their
statistical significance, we take a random sample of the first group
to match the size of the second group. We had initially attempted
to identify bot usage across 4 dependency management bots (De-
pendabot, Renovate Bot, Synk and Depu), but found insufficient
representation of bot usage other than Dependabot. Since [15] con-
firms that Dependabot is the most used bot for Github projects, we
exclusively focus on it for subsequent analysis.

Projects that use Dependabot for automated dependency man-
agement contain a config file (dependabot.yml) located in the
(./GitHub) directory of a project [6]. We use the GitHub API’s
code search functionality to locate this config file in the projects’
repositories. If this file was found, then the project is classified as
using Dependabot for automated dependency management.

4 RESULTS AND DISCUSSION
4.1 RQ1
What is the average Dependency Freshness in projects, and how does
it vary across projects of different sizes, popularity, and type?

Our analysis of dependency freshness indicates that extreme
outliers constitute less than 3% of the data. Because these outliers
are symmetrically distributed around the center, the mean and me-
dian dependency freshness values are very similar. For clarity and
robustness of our analysis, we have removed these extreme values.
Overall, the distribution of dependency freshness is approximately
uniform with a slight right skew, suggesting a modest tendency
towards longer exposure durations (Fig 1).

When comparing dependency freshness across project types, we
observe distinct patterns. Projects classified as applications tend
to have a sharp, well-defined peak in their freshness distribution,
indicating a more consistent update behavior. In contrast, libraries
and frameworks show a flatter distribution, which may reflect more
variable dependency management practices in these project cate-
gories (Fig 2).

Our correlation analysis reveals that projects with higher depen-
dent counts and larger codebases (as measured by lines of code)
tend to have lower dependency freshness – that is, their depen-
dencies are updated more frequently (Fig 3). Conversely, projects
with more GitHub stars show higher dependency freshness. This
suggests that larger, actively maintained projects are more proac-
tive in updating dependencies, whereas popular projects might
exhibit longer intervals between dependency updates, possibly due
to increased complexity or stability considerations.

To further explore these relationships, we stratified the data by
project type, project size (lines of code), and project popularity
(GitHub stars). The stratified analysis indicates that projects with
smaller codebases and lower popularity tend to exhibit a slightly
more right-skewed and flatter freshness distribution (Fig ??). This
implies greater variability in dependency update practices among
these projects.

Finally, a regression analysis was conducted to predict average
dependency freshness from project size, popularity, and depen-
dent count. The results show that GitHub stars have a statistically
significant positive association with dependency freshness, while
both lines of code and dependent count are negatively correlated
with freshness (p < 0.05 for all predictors). These findings suggest
that, after controlling for other factors, projects that are larger and
have more dependents tend to update their dependencies more fre-
quently, whereas more popular projects are associated with longer
dependency freshness intervals.

Overall, our results imply that proactive dependency manage-
ment – characterized by lower dependency freshness – is more
common in projects with larger codebases and higher dependent
counts. In contrast, popular projects (with higher GitHub stars)
tend to update dependencies less frequently.

4.2 RQ2
What are the average Vulnerability Exposure Windows in projects,
and how do they vary across projects of different sizes, popularity, and
type?

The analysis of vulnerability exposure windows reveals sev-
eral important findings. Outliers in the exposure window data are
mostly towards the higher end of the data, suggesting that the data
is not heavily skewed by extreme low values. There is a notable
difference between the mean and median exposure windows, with
the mean being significantly larger, which indicates a right-skewed
distribution. This right-skewness suggests that while most projects
have relatively short exposure windows, a smaller subset has sig-
nificantly longer exposure periods. The percentage of outliers is
also considerable, reinforcing the presence of a few projects with
extended vulnerability exposure (Fig 4).

The distribution of vulnerability exposure windows shows dis-
tinct patterns across project types. Framework projects tend to have
a flatter distribution, indicating that these projects exhibit a more
uniform exposure window length. In contrast, applications and
libraries display more peaked distributions, suggesting that these
project types may have more concentrated vulnerability exposure
periods (Fig 5).

In terms of correlations, we find that GitHub stars and depen-
dent count are negatively correlated with the vulnerability exposure
window, meaning that projects with more dependents and higher
popularity tend to have shorter exposure windows (Fig 6). This
may indicate that popular or widely used projects are quicker to
patch vulnerabilities, possibly due to greater community attention
and pressure. On the other hand, lines of code show a positive cor-
relation with the exposure window, suggesting that larger projects
may take longer to address vulnerabilities, possibly due to their
complexity and scale.
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Figure 1: Distribution of Dependency Freshness

Figure 2: Dependency Freshness by Project Type

We further stratified the data by project size (lines of code) and
popularity (GitHub stars) to observe the differences in exposure
windows across different project categories (Fig ??). Both size and
popularity distributions exhibit a second slight peak, suggesting

that some projects experience a secondary increase in vulnerability
exposure at a slightly longer window. For the middle popularity
and size bins, the second peak appears at lower exposure windows,
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Figure 3: Correlation Heatmap

suggesting that these projects may have a more rapid escalation of
exposure after initial delays.

Finally, regression analysis was conducted to model the vulner-
ability exposure window based on project size, popularity, and
dependent count. The regression results confirm the correlations
observed in the earlier analysis: higher GitHub stars and dependent
count are associated with shorter exposure windows, while larger
projects (in terms of lines of code) tend to have longer exposure
windows. All predictors have significant p-values (p < 0.05), rein-
forcing the importance of these factors in explaining the variability
in vulnerability exposure windows.

In summary, our findings suggest that popular projects withmore
dependents tend to have shorter vulnerability exposure windows,
likely due to more active maintenance and community attention.
On the other hand, larger projects with more complex codebases
appear to have longer exposure windows.

4.3 RQ3
Does the adoption of dependency management bots correlate with
reduced Dependency Freshness Vulnerability Exposure Windows?

We examined the relationship between the adoption of the de-
pendency management tool, Dependabot, and the vulnerability
exposure windows as well as the dependency freshness across the
treatment (no Dependabot) and control (Dependabot used) groups.
The analysis was conducted using a series of statistical tests, in-
cluding t-tests, U-tests, and regression analysis.

For the vulnerability exposure window, we found no statistically
significant difference between the treatment and control groups.
The t-test yielded a t-statistic of -1.335 and a p-value of 0.182, while
the U-test produced a U-statistic of 188886.5 with a p-value of 0.166.
These results indicate that the adoption of Dependabot does not sig-
nificantly reduce the vulnerability exposure window. Furthermore,
the regression analysis revealed that the coefficient for the variable
dependabot_used was -45.11, with a p-value of 0.295, suggesting
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Figure 4: Distribution for Exposure Windows
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Figure 5: Exposure Windows by Project Type

no significant correlation between the use of Dependabot and the
length of the vulnerability exposure window.

However, when examining the distribution of vulnerability expo-
sure windows, we observed that the control group (artifacts using
Dependabot) had lower quartile values and fewer extreme outliers
compared to the treatment group, which suggests that while the dif-
ference in means may not be significant, there are potentially fewer
extreme vulnerabilities in projects utilizing Dependabot (Fig 7).

On the other hand, for dependency freshness, the results were
more revealing. The t-test for the difference in average dependency
freshness between the treatment and control groups yielded a t-
statistic of 5.93 and a highly significant p-value of 3.3e-09, indicating
a clear and significant difference. The U-test also returned a signifi-
cant p-value of 9.47e-09. The regression results further corroborated
these findings, showing that the adoption of Dependabot is associ-
ated with an increase in dependency freshness, with a coefficient
of 129.65 (p-value = 0.000).

The regression analysis also revealed that the number of lines of
code had a negative correlation with dependency freshness (coeffi-
cient: -3.05e-07, p-value < 0.001), while GitHub stars had a positive
correlation (coefficient: 0.0046, p-value = 0.002).

Interestingly, although projects using Dependabot exhibited
higher dependency freshness on average, the box plot for the control
group (treatment group without Dependabot) showed a slightly
wider distribution compared to the treatment group, indicating
greater variability in the dependency freshness values for projects
that did not use Dependabot (Fig 8).

In summary, our analysis indicates that while the adoption of
Dependabot does not have a statistically significant effect on re-
ducing vulnerability exposure windows, it is associated with sig-
nificantly improved dependency freshness, with projects using
Dependabot maintaining fresher dependencies. These findings sug-
gest that while Dependabot may not immediately impact the speed
at which vulnerabilities are patched, it could still help in maintain-
ing the overall freshness of dependencies, which could indirectly
contribute to more secure and up-to-date project environments.

5 THREATS TO VALIDITY AND FUTURE
WORKS

Repositories containing a .yml configuration file (like dependabot.yml)
may not actively use the dependency management bot. This can
occur due to several reasons, such as mis-configured settings, dis-
abled automation, archived or inactive repositories, or a lack of
dependencies matching the update criteria. To mitigate this, we can
verify active bot usage by checking for pull requests authored by
the bot, analyzing commit histories for dependency updates, and
querying repository settings to confirm if the bot is enabled. This
ensures that only repositories with demonstrable bot activity are
considered. However, this was not possible in the current timeline
of the project considering the rate limits imposed on the GitHub
API. This limitation can be addressed in future works by incorpo-
rating bot activity verification through pull request analysis and
commit history mining.

There is a potential risk of selection bias in this study, as projects
that adopt dependency management bots, such as Dependabot, may
inherently prioritize security and better dependency management
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Figure 6: Correlation Heatmap

practices compared to other projects. This difference in prioritiza-
tion could introduce a skew in the results, as projects with a greater
focus on security and maintenance might naturally have improved
dependency freshness and vulnerability management, regardless of
the tool used. Also, it’s important to acknowledge the issue of causal
ambiguity; while a correlation between the use of dependency man-
agement bots and improved metrics (such as reduced vulnerability
exposure windows or improved dependency freshness) may exist,
this does not necessarily imply a causal relationship.

To mitigate the risk of selection bias, future studies could im-
plement more robust control groups by matching projects based
on similar size, popularity, and domain. This would help ensure
that the observed differences in outcomes are more likely to be
due to the intervention (i.e., the use of dependency management
bots) rather than pre-existing differences between the groups. Fur-
thermore, a longitudinal study could provide more insight into
the long-term impact of these tools. By isolating the effect of the
tool over time and tracking the same projects before and after the

adoption of dependency management bots, future research could
establish a stronger correlation and potentially uncover a causal re-
lationship between the use of these tools and improved dependency
management outcomes.

6 RELATEDWORKS
A comprehensive exploratory study on GitHub’s Dependabot [6],
examines both quantitative and qualitative aspects of its perfor-
mance. Their mixed-methods approach combined exploratory data
analysis with developer surveys to evaluate Dependabot’s effective-
ness in keeping dependencies up-to-date. Their findings revealed
that projects generally reduced technical lag after adopting Depend-
abot, with developers showing high receptivity to automatically
generated pull requests. However, they also identified limitations,
including inadequate compatibility scores for reducing update sus-
picion and a tendency for developers to configure Dependabot to
minimize notification volume. Notably, 11.3% of projects in their
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study eventually deprecated Dependabot in favor of alternative solu-
tions. Our work extends this by focusing specifically on the Maven
ecosystem, introducing novel metrics like Dependency Freshness
and Vulnerability Exposure Windows, and empirically evaluating
how these metrics vary across projects with different characteris-
tics.

6.1 Conclusion
In this study, we investigate the impact of automated dependency
management (specifically GitHub’s Dependabot) on real-world Java
projects in the Maven ecosystem. We introduce two novel metrics,
Dependency Freshness and Vulnerability Exposure Windows, to
quantify how promptly projects update dependencies and respond
to vulnerabilities. By analyzing a curated dataset of over 38,000 arti-
facts, we stratify projects by size, popularity, and type, and compare
bot-using projects against non-users. Our findings show that De-
pendabot usage significantly improves dependency freshness, but
does not have a statistically significant impact on reducing vulner-
ability exposure windows. These insights emphasize the strengths
and limitations of automated tools in managing dependencies at
scale.
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Figure 7: Exposure Windows with Dependabot Adoption
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Figure 8: Dependency Freshness with Dependabot Adoption
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