
Tracking Dependencies and Release
Frequency in the Maven Architecture
using Neo4j and Goblin Weaver

Daniel Pang, Ahmed El Shatshat

04/01/25

Introduction
▪ Dependency management is a key influencer of software architecture

▪ Dependency counts may grow or shrink for a variety of reasons (new functionality, remove
bloat, security risks, etc.)

▪ We believe minimizing dependency count is preferable, but does reality reflect
ideals?

▪ Further, we have seen the rise of Agile and modern code review speed up releases
tremendously.

▪ Might there be a correlation between dependency counts and release speeds?
▪ We conduct a case study on Maven Central to find out

PAGE 2

Maven and Neo4j
Neo4J Maven

▪ Artifact: Libraries
▪ Release: Releases of Libraries
▪ Relationship_AR: Describes a

version of a library
▪ Dependency: Describes what library

a release depends on
▪ AddedValues: an extra node type

with CVE , Freshness, and Popularity
data. Connected to Release nodes
▪ Artifacts also have one with Speed data

PRESENTATION TITLE PAGE 3

Research Questions
RQ1: Has Maven trended towards software architecture that has fewer dependencies
over the years?

RQ2: If Maven has trended towards fewer dependencies, has
 this resulted in faster software lifecycles?

RQ3: Has faster software life-cycles reduced security vulnerabilities
 in Maven?

PAGE 4

Methodology

PAGE 5

Research Question 1 - The Baseline
▪ Retrieve 2000 of the earliest and

latest releases
▪ Counts dependencies of each release
▪ SKIP 1000 to get the other 1000 for

the 2000 total releases for each query
▪ Basic statistical analysis on each

sample
▪ mean
▪ median

PAGE 6

Research Question 1 - The Popular Libraries
Might there be noticeable difference in
trends between the more popular
libraries and the general data?
▪ This query utilizes the AddedValue

node with popularity
▪ This measures number of dependents of

a particular release
▪ Snowball sampling to choose relevant

libraries
▪ Ensure sufficient data

PAGE 7

Research Question 1 - Dependencies in Popular Libraries
▪ Having chosen popular libraries this

query retrieves all important metrics
for each release, given a library id
▪ Dependency count
▪ Release id
▪ Timestamp
▪ CVE count

PAGE 8

Research Question 2 - The Baseline
▪ The goal was to compare release

speeds over Maven's lifetime
▪ The query finds releases that have

recent releases and very old releases
(10+ year gap)
▪ Finds the time between the first 2 releases
▪ Finds the time between the last 2 releases

▪ Basic statistical analysis on each
sample
▪ mean
▪ median
▪ variance

PAGE 9

Research Question 2 - Release Scheduling in Popular Libraries
▪ The former query retrieved all data

already
▪ Find difference in timestamp between

releases
▪ Also noted differences in releases
▪ These differences will be expanded upon

in the results section

PAGE 10

Research Question 3 - The Cutting Floor
▪ Unfortunately, establishing a baseline proved infeasible under our circumstances

▪ Further, although we had the CVE data it proved very difficult to work with
▪ This will be expanded upon in the Discussion section

PAGE 11

Results

PAGE 12

Research Question 1 - The Baseline
▪ Generally speaking: some dependency

bloat across Maven

PAGE 13

Dependency Counts of the 2000 Earliest Releases

Dependency Counts of the 2000 Latest Releases

Mean Median

Earliest 7.11 5

Latests 9.1265 7

Research Question 1 - Dependencies in Popular Libraries
▪ No real trend among the popular libraries

▪ Some increased in dependencies
▪ Some decreased in dependencies
▪ Each tell a different story

▪ More on that in the Discussion and Threats to Validity sections

PAGE 14

Research Question 2 - The Baseline
▪ A clear decrease in time between releases across Maven

▪ Variance is incredibly high (as to be expected) but the median also has a significant decrease

PAGE 15

Average Median Variance

Earliest 5433446102 (62.89 days) 3110888000 (36.01 days) 8.03379E+19 (Very high)

Latest 3687004220 (42.67 days) 1550125500 (17.94 days) 2.70521E+19 (Very high)

Difference 20.22 days (a factor of ~0.68) 18.07 days (a factor of ~0.49) (Very high)

Research Question 2 - Release Speeds in Popular Libraries
▪ When viewing popular libraries

▪ Those with decreasing dependencies
▪ Most have an upwards trendline
▪ One has a very marginal downward trend

▪ Those with increasing dependencies had
no notable trends

▪ Viewing the differences between
major and minor releases also
illustrated no general trends
▪ Some had much longer times for major

releases vs minor and others had the
inverse

PAGE 16

Discussion

PAGE 17

Research Question 1
▪ One would hope that dependency counts do go down to maintain code

quality and security
▪ In retrospect, seeing dependency bloat should have been expected

▪ Software systems have only become more and more complex
▪ Dependency management is likely technical debt that is difficult to

handle
▪ Even some of the more popular libraries struggle to keep dependency counts from

increasing over time

▪ Average of minimal change in dependency counts among popular
libraries illustrates an effort to combat dependency bloat

PAGE 18

Research Question 2
▪ Baseline clearly reflects what is a generally empirically observed trend in

industry
▪ However, the popular libraries have more varied behaviours amongst

them
▪ Some do follow this trend, while others have very different trends

▪ These other libraries have many minor releases that are steadily
released in between major releases
▪ This includes steady maintenance patches, pre-release versions, milestones, and

release candidates

PAGE 19

Research Question 3
▪ The structure of the data within the AddedValue nodes stores CVE data

as JSON strings
▪ Cypher does not work well with JSON

▪ This makes extracting severity and ID values difficult without additional
extraction technology

▪ Further, it’s difficult to know what nodes are relevant with CVE data for
establishing a baseline

PAGE 20

Related Work

PAGE 21

Related Work - MSR Mining Challenge
▪ "Chasing the Clock: How Fast Are Vulnerabilities Fixed in the Maven

Ecosystem?" - Rabbi et al.
▪ Investigates software vulnerability resolution time depending on severity, library

popularity as measured by number of dependents, and version release frequency
▪ "Faster Releases, Fewer Risks: A Study on Maven Artifact

Vulnerabilities and Lifecycle Management" - Shafin et al.
▪ Evaluates how release speed affects software security and lifecycle

▪ "On the Evolution of Unused Dependencies in Java Project Releases: An
Empirical Study" - Suwanachote et al.
▪ Examines how unused dependencies are introduced and removed
▪ Unused packages are common (52% of projects) but releases tend not to introduce

new unused dependencies (9%)
▪ 59% of resolved unused dependencies are removed and 41% are later used

PAGE 22

Related Work - Other Work
▪ “Streamlining Software Bloated Dependencies” - Wang et al.

▪ Attempts to tackle the issue of libraries that are introduced but are unnecessary
▪ Introduces a technique, Slimming, that removes bloated dependencies from

projects reliably

▪ “Understanding the impact of rapid releases on software quality” -
Khomh et al.
▪ Performed numerical analysis of Mozilla Firefox releases
▪ Analyzed how shorter release cycles impact crash rates, uptime, and bug rates

Release cycle timeframe and security vulnerability analysis are all
hot-button topics in the field

PAGE 23

Threats to Validity

PAGE 24

Threats to Validity - Release Issues
▪ We retrieved the data ordered on a timestamp variable

▪ In many cases, multiple versions of a library receive updates simultaneously
▪ For example, log4j-core versions 2.3.2 and 2.12.4 were released after 2.17.1,

indicating that different resources were allocated to separate releases
▪ This complicates the meaning of time between releases, as updates may not be

directly related

▪ Another challenge arises from pre-release versions, which are all labeled
differently
▪ This includes those marked as alpha, beta, Mx (milestone x), or RCx (release

candidate x)
▪ It may be preferable to exclude all pre-release versions, and possibly even minor

version updates

PAGE 25

Threats to Validity - Dependency Graph
▪ The structure of the dependency graph itself presents a challenge

▪ No way to confirm whether a particular release or library is actively used within
the Maven system

▪ When a minor version update for an older major release enters the system, its
continued relevance remains unclear

▪ Even with the augmented dataset, the AddedValue nodes only contain
popularity metrics for the previous year
▪ Generating a new graph with popularity metrics stretching out to the early days of

Maven was beyond the scope of this study
▪ It is unknown if such data is even available that far out.

▪ Finally, the sheer scale of the dependency graph introduces a potential
for human error in data interpretation

PAGE 26

Future Work and Conclusion

PAGE 27

Future Work
▪ Primarily, addressing the notes from Threats to Validity

▪ Iterating on techniques used, addressing issue in data extraction
▪ Sorting on version number instead of on timestamp

▪ Spending more time on extraction and interpretation of CVE data
▪ Would be interesting to see how the metrics we collected correlate with CVE count,

CVE response time, and how these correlate with CVE severity
▪ Precedent for this form of analysis from Related Work

▪ We did observe that popular libraries displayed unique trend behaviour
▪ Would be interesting to see if there are further differences between popular and

unpopular libraries
▪ Comparing similar metrics done in this study, and as listed above

PAGE 28

▪ We set out to assess and analyze dependency changes, release
frequency, and security vulnerabilities in the Maven ecosystem

▪ Our findings challenge many of the assumptions one has about the
evolution of a software system
▪ Dependency counts increasing, general trend of bloated libraries performing

later-stage optimizations

▪ While minimization of dependencies is an ideal goal, real world
constraints and consequences keep us from such an ideal

▪ Further work should explore more finely grained metrics, improve
security

Conclusion

PAGE 29 PRESENTATION TITLE PAGE 30

