e N e
Tracking Dependencies and Release Introduction

o L]
Freq uen cy in th e " aven Arc h Itectu re . Dependency management is a key influencer of software architecture
u si n g N eo llj an d Go b I i n we aver . t]))liz?iecrlllcr}ift;orlil:l:ss, I;zgf)grow or shrink for a variety of reasons (new functionality, remove

S - We believe minimizing dependency count is preferable, but does reality reflect

ideals?
» Further, we have seen the rise of Agile and modern code review speed up releases
tremendously.
Might there be a correlation between dependency counts and release speeds?
Daniel Pang, Ahmed El Shatshat - We conduct a case study on Maven Central to find out
UNIVERSITY OF
%Y WATERLGO | ook e

PAGE 2 ’ WATERLOO | feiemsrs

Maven and Neokj Research Questions
NeogdJ Maven RQ1: Has Maven trended towards software architecture that has fewer dependencies
. . . h ?
Artiactnode = Artifact: Libraries over the years
Release node v = Release: Releases of Libraries
Relationship AR A K = Relationship_AR: Describes a RQ2: If Maven has trended towards fewer dependencies, has

—> Dependency

version of a library
« Dependency: Describes what library
a release depends on

this resulted in faster software lifecycles?

o « AddedValues: an extra node type RQ3: Has faster software life-cycles reduced security vulnerabilities
with CVE , Freshness, and Popularity in Maven?
L3, data. Connected to Release nodes
vl v2 v3 = Artifacts also have one with Speed data

UNIVERSITY OF | Lo on UNIVERSITY OF | racuiry oF

PRESENTATION TITLE PAGE 3 WATERLOO MATHEMATICS. PAGE 4 Y WATERLOO | marsemarics

Methodology

PAGE 5

Research Question 1- The Popular Libraries

Might there be noticeable difference in
trends between the more popular
libraries and the general data?

- This query utilizes the AddedValue
node with popularity
» This measures number of dependents of
a particular release
- Snowball sampling to choose relevant
libraries
» Ensure sufficient data

PAGE 7

MATCH (pop:AddedValue)

WHERE pop. type="POPULARITY_1_YEAR"

RETURN pop.id, pop.value

ORDER BY toInteger(pop.value) DESC LIMIT 100

Listing 3: Retrieve 100 Most Popular Releases

UNIVERSITY OF | Lo oo

WATERLOO | mamemarics

Research Question 1- The Baseline

- Retrieve 2000 of the earliest and
latest releases

- Counts dependencies of each release

- SKIP 1000 to get the other 1000 for

the 2000 total releases for each query

- Basic statistical analysis on each

sample
= Imean
- median

MATCH (r:Release)-[e:dependency]->(dep)
WHERE r.timestamp<1431653069000

RETURN r.timestamp, COUNT(dep),

r.id ORDER BY r.timestamp ASC

Listing 1: Retrieve 1000 Earliest Releases

MATCH (r:Release)-[e:dependency]->(dep)
WHERE r.timestamp>1700000000000
RETURN r.timestamp, COUNT(dep),
r.id ORDER BY r.timestamp DESC

Listing 2: Retrieve 1000 Latest Releases

UNIVERSITY OF | Lo oo

PAGE 6 WATERLOO | watHemarics

Research Question 1- Dependencies in Popular Libraries

- Having chosen popular libraries this
query retrieves all important metrics
for each release, given a library id

- Dependency count
= Release id

» Timestamp

= CVE count

MATCH (a:Artifact)-[e:relationship_AR]->(r:Release)

WHERE a.id=~"org.jetbrains.kotlin:kotlin-stdlib"

WITH a,r WHERE (r)-[f:dependencyl->()

WITH count(f) AS depCount, a, r

MATCH (r)-[f:addedValues]->(g:AddedValue) WHERE g.type="CVE"
RETURN r.id, r.timestamp, depCount,
size(split(g.value,"cwe"))-1 AS CVECount

ORDER BY r.timestamp ASC

Listing 4: Retrieve All Releases and Relevant Metrics

UNIVERSITY OF | Lo oo

PAGE 8 WATERLOO | watHemarics

N |
Research Question 2 - The Baseline

- The goal was to compare release
Ve .
speeds over Maven's lifetime r.timestamp<1331653069000
- The query finds releases that have WITH a,r ORDER BY r.timestamp DESC
recent releases and very old releases WITH a, collect(r) AS releases
WHERE releases[1].timestamp>1700000000000 AND
(10+,year gap) releases[size(releases)-2].timestamp<1331653069000
b F}nds the t!me between the first 2 releases RETURN a.id, releases[0].timestamp,releases[1].timestamp,
- Finds the time between the last 2 releases

a et ! releases[size(releases)-1].timestamp,
- Basic statistical analysis on each releases[size(releases)-2]. timestamp

MATCH (a:Artifact)-[er:relationship_AR]->(r:Release)
WHERE r.timestamp>1700000000000 OR

sample ORDER BY releases[@].timestamp DESC
. mean Listing 5: Retrieve 1000 Latest Releases With Early Releases,
N Return Two Oldest and Two Newest
» median
+ variance

UNIVERSITY OF | Lo oo

PAGE 9 WATERLOO | watHemarics

R
Research Question 3 - The Cutting Floor

- Unfortunately, establishing a baseline proved infeasible under our circumstances

- Further, although we had the CVE data it proved very difficult to work with

» This will be expanded upon in the Discussion section

UNIVERSITY OF | Lo oo

PAGE 11 WATERLOO | marsemartics

*
Research Question 2 - Release Scheduling in Popular Libraries

- The former query retrieved all data

al,read}., . . MATCH (a:Artifact)-[e:relationship_AR]->(r:Release)
- Find difference in timestamp between wiere a.id=-"org. jetbrains.kotlin:kotlin-stdlib”

WITH a,r WHERE (r)-[f:dependencyl->()
releases . . WITH count(f) AS depCount, a, r
- Also noted differences in releases MATCH (r)-[f:addedvalues]->(g:AddedValue) WHERE g. type="CVE"

» These differences will be expanded upon RETURN r.id, r.timestamp, depCount,

. . size(split(g.value,"cwe"))-1 AS CVECount
in the results section ORDER BY r.timestamp ASC

Listing 4: Retrieve All Releases and Relevant Metrics

UNIVERSITY OF

PAGE 10 WATERLOO | mamiemarics

Results

PAGE 12

Research Question 1- The Baseline

. Generally speaking: some dependency T
bloat across Maven

Mean Median i
Earliest 7™M 5

Latests 9.1265 7

Dependency Counts of the 2000 Latest Releases

UNIVERSITY OF | Lo oo

PAGE 13 WATERLOO | marsemartics

Research Question 2 - The Baseline

- A clear decrease in time between releases across Maven
- Variance is incredibly high (as to be expected) but the median also has a significant decrease

Average Median Variance
Earliest 5433446102 (62.89 days) 3110888000 (36.01 days) 8.03379E+19 (Very high)
Latest 3687004220 (42.67 days) 1550125500 (17.94 days) 2.70521E+19 (Very high)
Difference 20.22 days (a factor of ~0.68) | 18.07 days (a factor of ~0.49) | (Very high)
UNIVERSITY OF
PAGE 15 WATERLOO | fatwenarics

Research Question 1- Dependencies in Popular Libraries

- No real trend among the popular libraries
- Some increased in dependencies
= Some decreased in dependencies
- Each tell a different story
= More on that in the Discussion and Threats to Validity sections

Library Name Start End Start-End % Low High
org.apache.logging.log4j:log4j-core 13 24 185% 12 57
org.junit.jupiter:junit-jupiter-engine 10 3 -67% 3 10
org.junit.vintage: junit-vintage-engine 12 3 -75% 2 12
ch.qgos.logback:logback-classic 3 20 667% 3 26
com. fasterxml. jackson.core: jackson-databind 8 12 50% 6 12
commons-io: commons-io 1 10 1000% 1 10
Table 1: Dependency Changes for Sel d Libraries
UNIVERSITY OF
PAGE 14 %}WATERLOO FATHEATICS

Research Question 2 - Release Speeds in Popular Libraries

- When viewing popular libraries
= Those with decreasing dependencies
= Most have an upwards trendline
= One has a very marginal downward trend
= Those with increasing dependencies had
no notable trends — 5
- Viewing the differences between : W,
major and minor releases also
illustrated no general trends
= Some had much longer times for major
releases vs minor and others had the
inverse

Figure 5: org junit vintagesunit-vintage-engine

Figure 6: ch.qos.logbackoghack-classic

UNIVERSITY OF | Lo oo

PAGE 16 WATERLOO | marsemarics

Discussion

PAGE 17

Research Question 2

Baseline clearly reflects what is a generally empirically observed trend in
industry
However, the popular libraries have more varied behaviours amongst
them
Some do follow this trend, while others have very different trends
- These other libraries have many minor releases that are steadily
released in between major releases
- This includes steady maintenance patches, pre-release versions, milestones, and
release candidates

UNIVERSITY OF | Lo oo

PAGE 19 WATERLOO | marsemartics

Research Question 1

One would hope that dependency counts do go down to maintain code
quality and security

In retrospect, seeing dependency bloat should have been expected
Software systems have only become more and more complex
Dependency management is likely technical debt that is difficult to
handle

Even some of the more popular libraries struggle to keep dependency counts from
increasing over time
- Average of minimal change in dependency counts among popular
libraries illustrates an effort to combat dependency bloat

UNIVERSITY OF | Lo oo

PAGE 18 WATERLOO | marsemarics

Research Question 3

- The structure of the data within the AddedValue nodes stores CVE data
as JSON strings
Cypher does not work well with JSON
- This makes extracting severity and ID values difficult without additional
extraction technology
Further, it’s difficult to know what nodes are relevant with CVE data for
establishing a baseline

UNIVERSITY OF | Lo oo

PAGE 20 WATERLOO | watHemarics

R R
Related Work - MSR Mining Challenge

"Chasing the Clock: How Fast Are Vulnerabilities Fixed in the Maven
Ecosystem?" - Rabbi et al.

Investigates software vulnerability resolution time depending on severity, library

popularity as measured by number of dependents, and version release frequency
"Faster Releases, Fewer Risks: A Study on Maven Artifact
Vulnerabilities and Lifecycle Management" - Shafin et al.

Evaluates how release speed affects software security and lifecycle

Related work - "On the Evolution of Unused Dependencies in Java Project Releases: An

Empirical Study" - Suwanachote et al.

Examines how unused dependencies are introduced and removed

Unused packages are common (52% of projects) but releases tend not to introduce

new unused dependencies (9%)

59% of resolved unused dependencies are removed and 41% are later used

UNIVERSITY OF | Lo oo

PAGE 21 PAGE 22 WATERLOO | marsemarics

N | N |
Related Work - Other Work

“Streamlining Software Bloated Dependencies” - Wang et al.
- Attempts to tackle the issue of libraries that are introduced but are unnecessary

Introduces a technique, Slimming, that removes bloated dependencies from
projects reliably

“Understanding the impact of rapid releases on software quality” -

Khombh et al.
Performed numerical analysis of Mozilla Firefox releases o ge
Analyzed how shorter relezse cycles impact crash rates, uptime, and bug rates Threats to valldlty

Release cycle timeframe and security vulnerability analysis are all
hot-button topics in the field

UNIVERSITY OF | Lo oo

PAGE 23 WATERLOO | marsemartics PAGE 24

Threats to Validity - Release Issues

- We retrieved the data ordered on a timestamp variable
- In many cases, multiple versions of a library receive updates simultaneously
= For example, log4j-core versions 2.3.2 and 2.12.4 were released after 2.17.1,
indicating that different resources were allocated to separate releases
- This complicates the meaning of time between releases, as updates may not be
directly related
- Another challenge arises from pre-release versions, which are all labeled
differently
» This includes those marked as alpha, beta, Mx (milestone x), or RCx (release
candidate x)
It may be preferable to exclude all pre-release versions, and possibly even minor
version updates

UNIVERSITY OF | Lo oo

PAGE 25 WATERLOO | marsemartics

Future Work and Conclusion

PAGE 27

|
Threats to Validity - Dependency Graph

- The structure of the dependency graph itself presents a challenge
» No way to confirm whether a particular release or library is actively used within
the Maven system
- When a minor version update for an older major release enters the system, its
continued relevance remains unclear
- Even with the augmented dataset, the AddedValue nodes only contain
popularity metrics for the previous year
= Generating a new graph with popularity metrics stretching out to the early days of
Maven was beyond the scope of this study
» Itis unknown if such data is even available that far out.
- Finally, the sheer scale of the dependency graph introduces a potential
for human error in data interpretation

UNIVERSITY OF

PAGE 26 %]WATERLOO WATHEMATICS

*
Future Work

- Primarily, addressing the notes from Threats to Validity
» Iterating on techniques used, addressing issue in data extraction
- Sorting on version number instead of on timestamp
- Spending more time on extraction and interpretation of CVE data
» Would be interesting to see how the metrics we collected correlate with CVE count,
CVE response time, and how these correlate with CVE severity
- Precedent for this form of analysis from Related Work
- We did observe that popular libraries displayed unique trend behaviour
- Would be interesting to see if there are further differences between popular and
unpopular libraries
- Comparing similar metrics done in this study, and as listed above

UNIVERSITY OF | Lo oo

PAGE 28 WATERLOO | watHemarics

N |
Conclusion

We set out to assess and analyze dependency changes, release UNIVERSITY OF
frequency, and security vulnerabilities in the Maven ecosystem WAT E R Loo
Our findings challenge many of the assumptions one has about the

evolution of a software system %

Dependency counts increasing, general trend of bloated libraries performing @
later-stage optimizations

While minimization of dependencies is an ideal goal, real world FACULTY OF MATHEMATICS
constraints and consequences keep us from such an ideal
Further work should explore more finely grained metrics, improve

. YOU+WATERLOO
security

Our greatest impact happens together.

UNIVERSITY OF

[
PAGE 29 WATERLOO s PRESENTATION TITLE

