Tracking Dependencies and Release Frequency in the Maven
Architecture using Neo4j and Goblin Weaver

Daniel Pang
University of Waterloo
Waterloo, Ontario
d3pang@uwaterloo.ca

Abstract

System architecture plays a pivotal role in software engineering,
influencing maintainability, security, and release cadence. One key
aspect of architectural evolution is dependency management, where
software artifacts may either accumulate or reduce dependencies
over time. To assess how dependency counts evolve over time, we
analyzed library dependency structures within the Maven Central
build system using data from the MSR 2025 Mining Challenge. Our
study investigates three research questions: (1) whether Maven
libraries exhibit a trend towards fewer dependencies, (2) whether
dependency trends correlate with software release speed, and (3)
whether increased release frequency reduces security vulnerabili-
ties. Our findings reveal a general increase in dependency counts
across Maven libraries, with popular libraries exhibiting more nu-
anced patterns—often experiencing dependency bloat before later
reductions. Due to dataset constraints, a comprehensive analysis
of security vulnerabilities remains an open challenge. These re-
sults provide insights into the evolution of software ecosystems
and suggest further areas of research into balancing dependency
management with release velocity and security considerations.

Keywords
Maven, Neo4], Cypher, Dependency Tracking, Goblin Weaver

ACM Reference Format:

Daniel Pang and Ahmed EI Shatshat. 2025. Tracking Dependencies and
Release Frequency in the Maven Architecture using Neo4j and Goblin
Weaver. In . ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 Introduction

System architecture is a foundational part of software engineering,
as the structure of a system has an impact on near every facet of
the system. As a system grows in functionality and robustness, it
often needs to increase its dependencies; this can be for a number of
reasons, including achieving such new functionality, or addressing
security issues that caused vulnerabilities in the system. For just as
many reasons, a system may need to reduce its number of depen-
dencies, as it may be needlessly bloating the system architecture,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Winter’25, Waterloo, ON, CA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Ahmed El Shatshat
University of Waterloo
Waterloo, Ontario
ar2elsha@uwaterloo.ca

or introducing new security vulnerabilities if vulnerabilities are
found.

However, it is generally believed that best practice is to keep your
system artifacts with as few dependencies as possible. A system
with as few dependencies as possible is thought to be far easier to
manage, as the space for where bugs can appear or where version
issues may manifest is reduced. It follows that, theoretically, system
architecture should trend naturally downwards with time.

In practice, there are countless circumstantial factors that may
prevent this from being the case. To gain greater insight on how
dependency counts evolves over time, we analyzed libraries within
the Maven Central build system.

1.1 Motivation

The Maven Central build system is the dataset for the MSR 2025
Mining Challenge [4]. Given the data was chosen and facilitated
by a credible organization, it serves as a good resource by which
to perform such an analysis. Maven itself is a 20 year old project
that has been documented extensively; thus, there is a lot of data
to peruse across its many years of being maintained.

As mentioned before, there is an assumption that dependency
counts for libraries within a system should decrease over time, with
the reasoning being that a smaller architecture is easier to manage.
To that end, if we do see that dependency counts within Maven
libraries decreasing, our next question is what effect this has had
on release speeds, if any.

The dataset includes additional nodes that contain security vul-
nerability information, if a library or associated dependency has
been flagged as having a security vulnerability. If the libraries trend
towards fewer dependencies, the expectation is that there would
be fewer security vulnerabilities overall. Furthermore, if there is
an increase in release frequency, it should also follow that security
vulnerabilities are being addressed more expediently.

1.2 Research Questions

To assess the veracity of our hypothesis, we formed these three
research questions:
e RQ1: Has Maven trended towards software architecture that
has fewer dependencies over the years?
e RQ2: If Maven has trended towards fewer dependencies, has
this resulted in faster software lifecycles?
e RQ3: Has faster software life-cycles reduced security vulner-
abilities in Maven?

The structure of the report is as follows. Section 2 will discuss
methodology, including more details on the dataset used and the
approach taken to extract relevant data. Section 3 will discuss the
results of our analysis, and answer the research questions listed

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Winter’25, March 2025, Waterloo, ON, CA

above. Section 4 will contain a meta-discussion of the results and
their greater meaning both for the Maven system and software
development as a whole. Section 5 will contain a brief discussion of
related work and how it relates to our work here. Finally, section 6
will cover threats to validity, possible avenues for future work, and
a summarizing conclusion.

2 Methodology

Following the requirements of the MSR 2025 Challenge, we primar-
ily used the provided dataset; this dataset has a focus on dependen-
cies and the dependency ecosystem as a whole, to be interfaced
with using the Goblin framework. Goblin itself is composed of a
Neo4] dependency graph covering the Maven Central architecture,
and includes a tool called Weaver to populate the dependency graph
with more up-to-date data. We did not use the Weaver tool, simply
using the provided dataset and interfacing with the graph using
Neo4].

Within the dependency graph, there are nodes for libraries, also
referred to as Artifact nodes. Each Artifact presents itself as a gen-
eral library; specific releases for that library in version numbers are
separate nodes, known as Release nodes, which are connected to
the base Artifact node. Additional nodes, called AddedValue nodes,
are part of an augmented dataset that was used for this study. They
contain additional information for Releases, such as Common Vul-
nerabilities and Exposure (CVE) information or popularity metrics.

Neo4]J uses the Cypher querying language to retrieve database
entries. Thus, the first step for all three research questions was to
formulate appropriate queries that would give us the data we need
to perform statistical analyses.

2.1 Research Question 1

To answer this research question, we decided to look at the first
2000 earliest releases in comparison to the 2000 latest releases. Our
queries retrieved either the earliest or latest releases respectively,
as well as their dependency counts. The queries themselves are as
follows:

MATCH (r:Release)-[e:dependency]->(dep)
WHERE r.timestamp<1431653069000

RETURN r.timestamp, COUNT(dep),

r.id ORDER BY r.timestamp ASC

Listing 1: Retrieve 1000 Earliest Releases

MATCH (r:Release)-[e:dependency]->(dep)
WHERE r.timestamp>1700000000000
RETURN r.timestamp, COUNT(dep),
r.id ORDER BY r.timestamp DESC

Listing 2: Retrieve 1000 Latest Releases

Querying on Neo4] gave only the first 1000 entries, so we first
collected the first 1000, and then skipped the first 1000 entries using
the SKIP 1000 command on a subsequent query to get 2000 entries
in total. After retrieving these entries, we took both the mean and
the median dependency count for each individual sample.

For all three research questions, we were also curious to see
if there were any differences between more popular libraries in
the Maven architecture and the general data retrieved normally.
Thankfully, the AddedValue nodes in the augmented dataset have

Daniel Pang and Ahmed El Shatshat

a metric for the popularity of a library. The POPULARITY_1_YEAR
value is computed by measuring the number of dependants of a
version of the library across a one year window, from the date the
dependency graph was created. To retrieve such entries, we used
the following query:

MATCH (pop:AddedValue)

WHERE pop.type="POPULARITY_1_YEAR"

RETURN pop.id, pop.value

ORDER BY toInteger(pop.value) DESC LIMIT 100

Listing 3: Retrieve 100 Most Popular Releases
We then looked at individual libraries retrieved from this query
using a snowball sampling method to collect relevant data and
then performed our statistical analysis on it. We used the following
query to retrieve all the releases, dependency counts, and CVE
information for these popular libraries:

MATCH (a:Artifact)-[e:relationship_AR]->(r:Release)

WHERE a.id=~"org.jetbrains.kotlin:kotlin-stdlib"

WITH a,r WHERE (r)-[f:dependency]l->()

WITH count(f) AS depCount, a, r

MATCH (r)-[f:addedValues]->(g:AddedValue) WHERE g.type="CVE"
RETURN r.id, r.timestamp, depCount,
size(split(g.value,"cwe"))-1 AS CVECount

ORDER BY r.timestamp ASC

Listing 4: Retrieve All Releases and Relevant Metrics
Note that the ai.id parameter changed based depending on the
library required. Some libraries, such as org. jetbrains.kotlin:
kotlin-stdlibororg.mockito:mockito-core,did not have enough
releases or dependencies to perform any form of statistically signif-
icant analysis on, so they were not considered.

2.2 Research Question 2

To answer our second research question, we needed to retrieve
release data for libraries that had releases both very early and very
late into Maven’s lifespan. This would help illustrate the difference
in release frequency across these two periods, and allow us to
calculate if there has been any large change in mean or median in
those counts.

We first retrieved all libraries and their associated releases that
were released before March 13th, 2012, and then retrieved each
respective library’s releases after November 11th, 2023. These re-
leases were all sorted based on their timestamps. We then took
the two oldest releases and the two most recent releases for each
library and performed a statistical analysis on the time between
each respective release pair. The query to retrieve this data is as
follows:

MATCH (a:Artifact)-[er:relationship_AR]->(r:Release)
WHERE r.timestamp>1700000000000 OR
r.timestamp<1331653069000

WITH a,r ORDER BY r.timestamp DESC

WITH a, collect(r) AS releases

WHERE releases[1].timestamp>1700000000000 AND
releases[size(releases)-2].timestamp<1331653069000
RETURN a.id, releases[0].timestamp,releases[1].timestamp,
releases[size(releases)-1].timestamp,
releases[size(releases)-2].timestamp

Tracking Dependencies and Release Frequency in the Maven Architecture using Neo4j and Goblin Weaver

ORDER BY releases[@].timestamp DESC

Listing 5: Retrieve 1000 Latest Releases With Early Releases,
Return Two Oldest and Two Newest

Similar to RQ1, we also looked at some of the most popular li-
braries using the same data collected in the manner described in the
previous subsection. Here, we were looking to see if time between
releases correlated with dependency counts; both libraries that had
an overall decrease in dependency counts, and those that had an
overall increase in dependency counts. Results will be expanded
upon in the next section.

2.3 Research Question 3

We were unable to establish a baseline metric for CVE security vul-
nerability data in the AddedValue nodes, as the dependency graph’s
structure makes it infeasible to collect such data across all libraries.
While we were able to assess individual libraries, establishing a
baseline was beyond the scope of this work.

Given we were able to look at and assess individual libraries,
we attempted to analyze this facet using the popular libraries as
done in the last two research questions. This was still difficult, as
libraries with CVE data are relatively uncommon in general; this
extends to the popular libraries as well.

3 Results

In this section we will go over the results of our statistical analysis,
looking at both the general trends within Maven, as well as the
trends of some of its most popular libraries.

3.1 Research Question 1

The results from our analysis showed a great degree in variation in
dependency counts across libraries over time. Plotted here are the
dependency counts of the 2000 earliest releases, followed by the a
plot of the dependency counts of the 2000 latest releases.

count(dep) vs. r.timestamp

150

100

count(dep)

o
=

e

e

1.115E+12 1.120E+12

1.125E+12 1.130E+12

rtimestamp

Figure 1: Dependency Counts 2000 Earliest Releases

Computing the mean value for dependency counts results in
7.11 average dependency counts in the earlier releases, compared
to the average of 9.1265 for the later releases. Taking the median
gives us 5 for the earlier releases, and 7 for the later releases. This

Winter’25, March 2025, Waterloo, ON, CA

count(dep) vs. r.timestamp

200

150

100

count(dep)

®
50 e %
°
L]
® L]
o2% o ®
®
&+, o o9
1.72492E+12 1.72494E+12 1.72486E+12 1.72498E+12
riimestamp

Figure 2: Dependency Counts 2000 Latest Releases

demonstrates that, generally speaking, Maven is suffering from a
degree of dependency bloat.

However, looking at the more popular libraries gives more varied
data. Table 1 below shows the values for dependency count from
the first release, the last release, and also includes both the zenith
and the nadir of the counts as well. org.apache.logging.
log4j:log4j-core suffers some dependency bloat, to a high of 57,
before quickly cutting down to a value of 24. Notably, there is a
large drop in dependencies at 2.20.0.

org.junit. jupiter:junit-jupiter-engine startsfromahigh
of 10, before quickly trimming down to 3 dependencies, with some
fluctuation. There does not seem to be a correlation between depen-
dency reduction and major version count for this library. org. junit.
vintage:junit-vintage-engine is a very similar library, and
thus has very similar results, with slightly differing highest and
lowest values. Again, not much correlation between version change
and dependency count.

On the other hand, ch. qos. logback: logback-classic instead
suffered from dependency bloat, reaching a high of 26 before abruptly
cutting down to a steady count of 20. It’s worth noting that pre-1.0
release versions began at 3 dependencies, bloating to 24 on full re-
lease, followed by a steady decline. com. fasterxml. jackson.core:
jackson-databind and commons-io: commons-io also suffered de-
pendency bloat; the latter library had a large timescale between
going from 1 dependency to 5, suggesting a possible refactoring of
the library.

3.2 Research Question 2

The results of our analysis of release speeds show that time between
releases has indeed decreased overall. The timestamp data is in
milliseconds from the Unix baseline, so it has been converted to
days for convenience. In the latest releases, we find that the mean
time between the two latest releases of a library is 3687004220 (42.67
days), whereas the median is 1550125500 (17.94 days); this gives us
a variance of approximately 2.70521E+19.

For the earliest releases, the mean time between two releases
was 5433446102 (62.87 days), with a median release timeframe of
3110888000 (36.006 days). This gives us a difference between the
mean time for the latest and the mean time for the earliest of

Winter’25, March 2025, Waterloo, ON, CA

Daniel Pang and Ahmed El Shatshat

Library Name Start End Start-End % Low High
org.apache.logging.log4j:log4j-core 13 24 185% 12 57
org.junit.jupiter:junit-jupiter-engine 10 3 -67% 3 10
org.junit.vintage: junit-vintage-engine 12 3 -75% 2 12
ch.qgos.logback:logback-classic 3 20 667% 3 26
com. fasterxml. jackson.core: jackson-databind 8 12 50% 6 12
commons-io:commons-io 1 10 1000% 1 10

Table 1: Dependency Changes for Selected Libraries

1746441882 (20.213 days), giving us a factor of 0.6785756499. Doing
the same for the median gives us a difference of 1560762500 (18.064
days), and a factor of 0.4982903595.

Such results are a clear indication that releases have increased
in frequency over Maven’s lifetime. The variance for both results
is quite high, making the median a better metric for measurement.
Even so, both metrics demonstrate that time between versions has
decreased by a significant amount; a factor of nearly half.

Looking at the popular libraries again, notably those with re-
ductions in dependencies, we also wanted to view if there were
differences in trends between major releases and minor releases;
major releases being those with a new initial number in the ver-
sion count, and minor releases being those that increment a sub-
sequent number, pre-releases, milestones, and release candidates.
org.apache.logging.log4j:log4j-core trends upwards in time
between releases, suggesting a slower release schedule. In terms of
overall metrics, the mean time between releases was 6002281672
(69.47 days), with the mean time for a major patch being 9298893667
(107.63 days) and the mean time for a minor patch being 3863938757
(44.72 days). This leads to a factor of approximately 2.4, which ex-
plains the zig-zag nature of the chart as seen below in Figure 3.

org.junit.jupiter:junit-jupiter-engine hasasimilarlook-
ing graph; an upward trend in time between releases, with a mean
across all releases of 3706448855 (42.9 days). The mean time for a ma-
jor patch is 1334937500 (15.45 days), while the mean time for a minor
patch (including milestone and release candidates) is 4205714404
(48.68 days). Again, a factor of approximately 0.31 reflects the zig-
zag nature of the chart. Interestingly, org. junit.vintage: junit-
vintage-engine has an identical release schedule, so the same con-
siderations apply.

On the other hand, ch. qos. logback: logback-classic reflects
the hypothesis to a high degree, with big drops in between releases
correlating with drops in dependency counts. However, it also
correlates with major release version, thus leading to an unclear
conclusion. The mean time between releases was 4202877133 (48.61
days), with the mean time for a major patch being 3986234250 (46.18
days) and the mean time for a minor patch being 4224013024 (48.84
days). This indicates a downwards trend in time between releases.

The libraries with dependency bloat did not demonstrate any
interesting correlation, and thus have been abrogated. Even among
the library expanded upon above, there doesn’t seem to be a mea-
surable trend across the popular releases.

3.3 Research Question 3

As explained earlier, we found it infeasible within the time given to
work with the CVE data across all the libraries within Maven. As
such, we were unfortunately unable to answer this question our-
selves. The popular library we looked at were also largely missing
CVE data. Regardless, we were able to look at some of the libraries
and establish trends.

org.apache.logging.log4j:log4j-core had an increase in
time between releases, but had an increase in CVE reduction fre-
quency. ch.qos. logback: logback-classichasaninitial increase
in time between releases, before speeding up and greatly reduc-
ing the time between releases. CVE count was observed to change
quickly, suggesting that, while quick patches may introduce secu-
rity vulnerabilities, they can also be responded to quickly.

4 Discussion

RQ1 was an exercise in seeing if general best practices regarding
dependency counts were being followed in the Maven ecosystem.
We hoped to see that dependency counts would trend downwards,
as to maintian code quality and mitigate security vulnerabilities.
In practice, and in retrospect, seeing dependency bloat increase
should have been expected.

There is of course the primary argument of software systems get-
ting more complex from the early 2010s to the mid 2020s of today.
There are far more considerations and expectations for systems
today, which logically lends itself well to the trends seen. Further-
more, it’s likely many of these libraries accumulated technical debt
in the form of dependency bloat; even some of the more popular
libraries struggle to keep dependency count from increasing over
time. However, given the average of minimal changes in depen-
dency counts amongst popular libraries, there is an illustrated effort
to combat dependency bloat.

However, RQ2 did indeed reflect the industry trend of release
frequency increasing overall; there is much empirical evidence
of this trend both within the dataset, and across industry. More
interesting is the results from the popular libraries. One would
intuit that major releases would take longer to release than minor
ones, as the expectation is that minor releases can be done more
quickly to patch up bugs or flagged vulnerabilities.

This is indeed the case with some libraries, such as org. apache.
logging.log4j:1log4j-core; this is not the case with other li-
braries such as ch.qos.logback:logback-classic or the two
jupiter-engine libraries. Closer inspection reveals that these li-
braries have many releases that seem to “bridge” the time between
major releases. This includes steady maintenance patches for older

Tracking Dependencies and Release Frequency in the Maven Architecture using Neo4j and Goblin Weaver

== Time betweenreleases == Average oflasts
25E+10
2.0E+10
1.5E+10
1.0E+10
5.0E+9
0
1.4E+12 1.5E+12 1.6E+12 1.7E+12

Figure 3: org.apache.logging.log4j:log4j-core
== Time between releases == Average of [asts
1.5E+10

1.0E+10

50E+9

1.50E+12 1.55E+12 1.60E+12 1.65E+12 1.F0E+12

Figure 5: org.junit.vintage:junit-vintage-engine

Winter’25, March 2025, Waterloo, ON, CA

== Time hetween releases == Average of lasts

1.5E+10

1.0E+10

S0E+9

1.50E+12 1.55E+12 1.60E+12 1.65E+12 1.70E+12

Figure 4: org.junit.jupiter:junit-jupiter-engine

== Time between releases == Average of lasts
6.00E+10
4.00E+10
2.00E+10
0.00E+0
1.2E+12 1.3E+12 1.4E+12 1.5E+12 1.6E+12 1.7E+12

Figure 6: ch.qos.logback:logback-classic

Figure 7: Four Graphs Plotting Time Between Releases and Average of the Time Between the Last 5 Releases

releases, pre-release versions, milestones, and release candidates.
Further discussion will occur in Threats to Validity section.

As previously mentioned, RQ3 was infeasible for us to answer
within the time given, given the structure of the data within the
AddedValue nodes. To further elaborate, the CVE data is stored as
a JSON string within the AddedValue node as a parameter. Cypher
cannot read JSONs, so extracting severity and id values would
have required additional extraction techniques given we found that
Cypher cannot parse these values. This made it very difficult to
reason about trends in CVE data using these metrics without first
extracting all possibly relevant nodes, and then extracting the data
within them in a different way. Further possible ways this could
have been done will be discussed in the Future Work section.

5 Related Work

Given our dataset is from the MSR 2025 Mining Challenge, there
are some submissions to the challenge that are related to the work
we completed here. Rabbi et al. [2] take a closer look at the security
vulnerability information in the AddedValue nodes, assessing how
quickly the vulnerabilities are fixed in the Maven ecosystem relative
to their severity, the library’s popularity, and release frequency.
Similarly, Shafin et al. [3] explore how release speeds correlate with

software security and release frequency, and did find that faster
release cycles were linked to fewer CVE counts in dependency
chains. Suwanachote et al. [5] focus instead on Java projects, looking
to see how many projects have packages that go unused, or if any
dependencies introduced into a project never see use.

Outside of the MSR domain, there has been much work done on
tracking both dependencies and release speeds. Wang et al. [6] take
a closer look at streamlining bloated dependency structures in Java
projects. They introduce a technique they call “slimming"" to reli-
ably remove dependencies from projects that are causing needless
bloat. Khombh et al. [1] explore the shift from more traditional long
release cycles that would take multiple months, to the now more
common shorter release cycles. Looking closer at Mozilla Firefox,
they compare crash rates, median uptime, and the proportion of pre-
and post-release bugs between releases in the traditional timeframe
and the contemporary faster release cycle. They also assess if there
have been changes to the development process by analyzing the
source code across these periods.

Dependency analysis, the impact of release cycle timeframes, and
security vulnerability analysis are all hot-button topics in the field,
and will only see more analysis as we both seek to achieve generality

Winter’25, March 2025, Waterloo, ON, CA

in results, while also creating new products and methodologies that
shake up the field.

6 Summarizing Thoughts

Before we summarize the work we have done, we will first take a
look at the possible threats to validity that arose while we worked
towards our results.

6.1 Threats to Validity

One limitation of this study is the ordering of releases by timestamp,
which makes the interpretation of time between releases only par-
tially reliable. In many cases, multiple versions of a library receive
updates simultaneously. For instance, in the case of log4j-core,
versions 2.3.2 and 2.12.4 were released after 2.17.1, indicating that
different resources were allocated to separate releases. This com-
plicates the meaning of time between releases, as updates may not
be directly related. A more refined approach would involve distin-
guishing between releases that received updates after subsequent
versions, under the assumption that they utilize separate resources.
However, this approach falls outside the scope of this study and
would significantly reduce the available dataset while introducing
further complexities.

Another challenge arises from pre-release versions, including
those marked as alpha, beta, Mx (milestone x), or RCx (release can-
didate x). These versions act as transitional stages between full
releases and can distort data, particularly when analyzing time be-
tween releases. For example, for junit-jupiter-engine, the time
span from 5.3.2 to 5.4.0 appears to be 6.4E+09, but when accounting
for an intermediate milestone and two release candidates, the im-
mediate preceding release’s timestamp places this time span at only
6.07E+08; a difference by a factor of 10. To obtain a clearer picture
of release intervals, it may be preferable to exclude all pre-release
versions, and possibly even minor version updates.

Additionally, the structure of the dependency graph presents a
challenge. There is no way to confirm whether a particular release
or library is actively used within the Maven system, as the core
dataset only provides timestamps. This makes it difficult to empiri-
cally assess the impact of certain releases. When a minor version
update for an older major release enters the system, its continued
relevance remains unclear, complicating any conclusions drawn
from dependency trends. Even with the augmented dataset, the
AddedValue nodes only contain popularity metrics for the previous
year, from when the graph was generated. Generating a new graph
with popularity metrics stretching out to the early days of Maven
was beyond the scope of this study, and it is unknown if such data
is even available that far out.

Finally, the sheer scale of the dependency graph introduces a
potential for human error in data interpretation. With 15,117,217
nodes and approximately ten times as many edges, extracting mean-
ingful patterns and generalizable insights is inherently difficult. The
complexity of the graph structure makes it challenging to ensure
complete accuracy in both data collection and analysis.

6.2 Future Work

In terms of future work, the most clear path would be to address
the issues mentioned in the threats to validity above. Iterating on

Daniel Pang and Ahmed El Shatshat

the techniques used in this study while addressing the issues in the
data as we extracted it would hopefully lead to more clear statistical
results. This would help us make conclusions with more confidence,
as while we do see correlation with many of our results, the veracity
of such correlation may be impacted by the somewhat messy data.
Another approach may be to sort entries based on version number,
as opposed to timestamps; as we saw, older version updates are
often released after a newer version has been rolled out.

While we initially wanted to do more with the CVE data, we
found it difficult to work with and parse within the time provided.
Given more time and resources, it would be interesting to see if
there is any correlation between the previously analyzed metrics,
dependency count and release speeds, against CVE metrics; these
include the number of CVEs, the response time to clearing CVEs,
and how these metrics change with CVE severity. We see from
the related work that CVE severity does correlate with response
time, so we would both attempt to repeat that result and looking
more granularly at other metrics. Further investigation into driver
technologies for Cypher and Neo4] would also help guide efforts
on this front.

Finally, we did see that popular libraries did have some differ-
ences in comparison to the general data we extracted; however,
we did not find enough to make any convincing conclusions. Per-
forming a more rigorous analysis between more and less popular
libraries and comparing metrics such as release frequency or CVE
response time may provide interesting results.

7 Conclusion

Our study sought to understand the evolution of dependency struc-
tures within the Maven ecosystem and its broader implications
for software architecture. The findings challenge the assumption
that dependency counts naturally decline over time, instead high-
lighting a general trend of dependency growth, with certain li-
braries demonstrating later-stage optimization. Furthermore, while
release frequencies have accelerated, we found no strong correla-
tion between dependency count reduction and faster release cycles.
Security vulnerability assessment was constrained by dataset limita-
tions, leaving open the question of how dependency trends impact
vulnerability management at scale.

These results underscore the complexity of dependency man-
agement in modern software ecosystems. While minimizing de-
pendencies remains an ideal goal for maintainability and security,
real-world constraints—such as feature expansion and external
library reliance—complicate this effort. Our analysis of popular li-
braries suggests that dependency bloat is often followed by strategic
reductions, reflecting a balancing act between functionality and ar-
chitectural streamlining. Future work should explore finer-grained
metrics for dependency utility, more comprehensive security vul-
nerability assessments, and broader implications for software main-
tenance practices. By deepening our understanding of these trends,
developers and researchers can work towards more sustainable and
secure software ecosystems.

Tracking Dependencies and Release Frequency in the Maven Architecture using Neo4j and Goblin Weaver Winter’25, March 2025, Waterloo, ON, CA

References Fewer-Risks- A-Study-on-Maven- Artifact-Vulnerabilities-and- Lifecycle

[1] Tejinder Dhaliwal Ying Zou Foutse Khomh, Bram Adams. 2014. Understanding Accessed: 20?5f03'30‘ .
the impact of rapid releases on software quality. Empirical Software Engineering [4] MSR 2025 Mining Challenge. ?0?5' MSR 2025 Mining Challgnge. https://2025.
19, 6 (2014), 1191-1234. doi:10.1007/510664-014-9308-x msrconf.org/track/msr-2025-mining-challenge?#event-overview Accessed: 2025-

[2] Rajshakhar Paul Minhaz F. Zibran Md Fazle Rabbi, Arifa Islam Champa. 03-30. . o . . .
2025. Chasing the Clock: How Fast Are Vulnerabilities Fixed in the [5] Yutaro Kashiwa Bin Lin Hajimu lida Nabhan Suwanachote, Yagut Shakizada.
Maven Ecosystem?. In Proceedings of the MSR 2025 Mining Challenge. 2025. On the Evolution of Uflused Dependencies in. Java Project Releases:
https://2025.msrconf.org/details/msr-2025-mining-challenge/16/Chasing- An Empirical Study. In Proceedlngs of {h? MSR 2025 Mining Challenge. hittps:
the-Clock-How-Fast- Are- Vulnerabilities- Fixed-in-the-Maven-Ecosystem- //2025.msrconf.org/details/msr-2025-mining-challenge/22/On-the-Evolution-
Accessed: 2025-03-30. of-Unused-Dependencies-in-Java-Project-Releases- An-Empirical-Study

[3] S. M. Mahedy Hasan Minhaz F. Zibran Md Shafiullah Shafin, Md Fazle Rabbi. Acgessed: 2'0.25'03'30'
2025. Faster Releases, Fewer Risks: A Study on Maven Artifact Vulner- (6] Hai Yu Zhiliang Zhu Ying Wang, Shing-Chi Cheung. 2025. Streamlining Soft-

abilities and Lifecycle. In Proceedings of the MSR 2025 Mining Challenge. ware: Bloated Dependencies. ResearchGate (2025). https://www.researchgate.net/

https://2025.msrconf.org/details/msr-2025-mining- challenge/6/Faster- Releases- gg;éicoe;ti;)(l)l/ 389326457_Streamlining_Software_Bloated_Dependencies Accessed:

https://doi.org/10.1007/s10664-014-9308-x
https://2025.msrconf.org/details/msr-2025-mining-challenge/16/Chasing-the-Clock-How-Fast-Are-Vulnerabilities-Fixed-in-the-Maven-Ecosystem-
https://2025.msrconf.org/details/msr-2025-mining-challenge/16/Chasing-the-Clock-How-Fast-Are-Vulnerabilities-Fixed-in-the-Maven-Ecosystem-
https://2025.msrconf.org/details/msr-2025-mining-challenge/6/Faster-Releases-Fewer-Risks-A-Study-on-Maven-Artifact-Vulnerabilities-and-Lifecycle
https://2025.msrconf.org/details/msr-2025-mining-challenge/6/Faster-Releases-Fewer-Risks-A-Study-on-Maven-Artifact-Vulnerabilities-and-Lifecycle
https://2025.msrconf.org/track/msr-2025-mining-challenge?#event-overview
https://2025.msrconf.org/track/msr-2025-mining-challenge?#event-overview
https://2025.msrconf.org/details/msr-2025-mining-challenge/22/On-the-Evolution-of-Unused-Dependencies-in-Java-Project-Releases-An-Empirical-Study
https://2025.msrconf.org/details/msr-2025-mining-challenge/22/On-the-Evolution-of-Unused-Dependencies-in-Java-Project-Releases-An-Empirical-Study
https://2025.msrconf.org/details/msr-2025-mining-challenge/22/On-the-Evolution-of-Unused-Dependencies-in-Java-Project-Releases-An-Empirical-Study
https://www.researchgate.net/publication/389326457_Streamlining_Software_Bloated_Dependencies
https://www.researchgate.net/publication/389326457_Streamlining_Software_Bloated_Dependencies

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Research Questions

	2 Methodology
	2.1 Research Question 1
	2.2 Research Question 2
	2.3 Research Question 3

	3 Results
	3.1 Research Question 1
	3.2 Research Question 2
	3.3 Research Question 3

	4 Discussion
	5 Related Work
	6 Summarizing Thoughts
	6.1 Threats to Validity
	6.2 Future Work

	7 Conclusion
	References

